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Overview
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Decoder-based Transformers

2 How Transformers Perform PCA

3 How Transformers Perform Sparse Recovery: A brief example of
decoder-based Transformers
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Encoder-based vs Decoder-based Transformers

Aspect Encoder-based Transformer Decoder-based Transformer

Primary Use Understanding Generation
Attention Type Bidirectional Causal (unidirectional)
Masking No mask (full context) Causal mask (only past tokens

visible)
Input Full sequence at once Left-to-right, token by token
Training Objec-
tive

Masked Language Modeling
(MLM)

Autoregressive Language Mod-
eling

Example Mod-
els

BERT, RoBERTa GPT, ChatGPT

Output Contextual embeddings Predicted next tokens
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Attention layer

Definition 1
(Attention layer). A (self-)attention layer with M heads is denoted as
Attnθ(·) with parameters θ = {(Vm,Qm,Km)}m∈[M ] ⊂ RD×D. On any
input sequence H ∈ RD×N ,

H̃ = Attnθ(H) := H+
1

N

M∑
m=1

(
VmH · σ

(
(QmH)⊤(KmH)

))
∈ RD×N ,

where σ : R → R is the ReLU function. In vector form,

h̃i = [Attnθ(H)]i = hi +

M∑
m=1

1

N

N∑
j=1

σ (⟨Qmhi,Kmhj⟩) ·Vmhj .
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MLP Layer

Definition 2
(MLP layer). A (token-wise) MLP layer with hidden dimension D′ is
denoted as

MLPθ(·) with parameters θ = (W1,W2) ∈ RD′×D × RD×D′
.

On any input sequence H ∈ RD×N ,

H̃ = MLPθ(H) := H+W2σ(W1H),

where σ : R → R is the ReLU function. In vector form, we have

h̃i = hi +W2σ(W1hi).
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Transformer

Definition 3
(Transformer). An L-layer Transformer, denoted as TFθ(·), is a
composition of L self-attention layers each followed by an MLP layer:

H(L) = TFθ(H
(0)), where H = H(0) ∈ RD×N

is the input sequence, and

H(ℓ) = MLP
θ
(ℓ)
mlp

(
Attn

θ
(ℓ)
attn

(H(ℓ−1))
)
, ℓ ∈ {1, . . . , L}.

Above, the parameter θ = (θ
(1:L)
attn ,θ

(1:L)
mlp ) consists of the attention layers

θ
(ℓ)
attn = {(V(ℓ)

m ,Q
(ℓ)
m ,K

(ℓ)
m )}m∈[M ] ⊂ RD×D and the MLP layers

θ
(ℓ)
mlp = (W

(ℓ)
1 ,W

(ℓ)
2 ) ∈ RD×D′ × RD′×D.

Qinyan Liu How Transformers Perform PCA and Sparse RecoveryJuly 6, 2025 5 / 60



Optional: Dimensional Adjustment

TFθ(H) := W̃0 ×MLP
θ
(ℓ)
mlp

(
Attn

θ
(ℓ)
attn

(H(ℓ−1))
)
× W̃1, ℓ ∈ {1, . . . , L}

The two additional matrices W̃0 ∈ Rd1×D and W̃1 ∈ RN×d2 serve for the
dimension adjustment purpose such that the output of TFθ() will be of
dimension Rd1×d2 .
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Norm of Parameters

We additionally define the following norm of a Transformer TFθ:

∥θ∥op :=

max
ℓ∈[L]

{
max
m∈[M ]

{
∥Q(ℓ)

m ∥op, ∥K(ℓ)
m ∥op

}
+

M∑
m=1

∥V(ℓ)
m ∥op + ∥W(ℓ)

1 ∥op + ∥W(ℓ)
2 ∥op

}
.

We can prove that Transformer is Lipschitz continous to this norm when
inputs are bounded.
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Input Matrix

Input:

H =

x1 x2 · · · xN xN+1

y1 y2 · · · yN 0
p1 p2 · · · pN pN+1

 ∈ RD×(N+1), pi :=

 0D−(d+3)

1
1{i < N + 1}

 ∈ RD−(d+1).

{pi} are fixed vectors consisting of ones, zeros, and indicator for being the
trained token (similar to a positional encoding vector). We assume

∥xi∥2 ≤ Bx, |yi| ≤ By, a.s.

Output:
H̃ = TFθ(H)

ŷN+1 = r̃eady(H̃) := clipR

((
h̃N+1

)
d+1

)
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Masked Attention layer

Decoder TFs are the same as encoder TFs, except that the attention layers
are replaced by masked attention layers with a specific decoder-based
(causal) attention mask.

Definition 4
Masked Attention Layer A masked attention layer with M heads is denoted
as MAttnθ(·) with parameters θ =

{
(Vm,Qm,Km) ∈ (RD×D)3

}M

m=1
.

On any input sequence H ∈ RD×N ′
with N ′ ≤ N ,

H̃ = MAttnθ(H) :=

H+
∑M

m=1(VmH)×
(
(MSK1:N ′,1:N ′)◦σ(QmH)⊤(KmH)

)
∈ RD×N ′

,
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Masked Attention Layer

In the definition, ◦ denotes the entry-wise (Hadamard) product of two
matrices, and MSK ∈ RN×N is the mask matrix given by

MSK =


1 1/2 1/3 · · · 1/N
0 1/2 1/3 · · · 1/N
0 0 1/3 · · · 1/N
· · · · · · · · · · · · · · ·
0 0 0 · · · 1/N

 .

In vector form, we have

h̃i = [Attnθ(H)]i = hi +

M∑
m=1

1

i

i∑
j=1

σ(⟨Qmhi,Kmhj⟩) · Vmhj .
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Decoder-based Transformer

Definition 5
(Decoder-based Transformer). An L-layer decoder-based Transformer,
denoted as DTFθ(·), is a composition of L self-attention layers each
followed by an MLP layer:

H(L) = DTFθ(H
(0)), where H = H(0) ∈ RD×N

is the input sequence, and

H(ℓ) = MLP
θ
(ℓ)
mlp

(
MAttn

θ
(ℓ)
mattn

(H(ℓ−1))
)
, ℓ ∈ {1, . . . , L}.

Above, the parameter θ = (θ
(1:L)
mattn,θ

(1:L)
mlp ) consists of the attention layers

θ
(ℓ)
mattn = {(V(ℓ)

m ,Q
(ℓ)
m ,K

(ℓ)
m )}m∈[M ] ⊂ RD×D and the MLP layers

θ
(ℓ)
mlp = (W

(ℓ)
1 ,W

(ℓ)
2 ) ∈ RD×D′ × RD′×D.

Qinyan Liu How Transformers Perform PCA and Sparse RecoveryJuly 6, 2025 11 / 60



Input Matrix

Input:

H =

x1 0 . . . xN 0 xN+1

0 y1 . . . 0 yN 0
p1 p2 . . . p2N−1 p2N p2N+1

 ∈ RD×(2N+1),

pi :=


0D−(d+4)

⌈i/2⌉
1

mod(i+ 1, 2)

 ∈ RD−(d+1)

Output:
H̃ = DTFθ(H)

ŷN+1 = r̃eady(H̃) := clipR

((
h̃2N+1

)
d+1

)
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Comparsion of Input Matrix

The input format for decoder-based Transformer is different from the
input format for encoder-based Transformers.
The main difference is that (xi, yi) are in different tokens in the
former, whereas (i, yi) are in the same token in the latter.
The reason for the former (i.e., different tokens in decoder) is that we
want to avoid every [xi; 0] token seeing the information of yi, since we
will evaluate the loss at every token.
The reason for the latter (i.e., the same token in encoder) is for
presentation convenience: since we only evaluate the loss at the last
token, it is not necessary to alternate between [xi; 0] and [0; yi] to
avoid information leakage.
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Input Format Conversion

(Proof to be added)

Proposition 6
Input format conversion There exists a 2-layer decoder TF with 3 heads per
layer, hidden dimension 2 and ∥θ|2 ≤ 12 such that upon taking input H of
format for decoder-based Transformers, it outputs H̃ = DTF(H) with

H̃ =

x1 0 . . . xN 0 xN+1

0 y1 . . . 0 yN 0
p1 p2 . . . p2N−1 p2N p2N+1

 ∈ RD×(2N+1),

In particular, this format contains the format for encoders as a submatrix,
by restricting to the {1, 2, . . . , D − 1, D − 2, D} rows and
{2, 4, . . . , 2N − 2, 2N, 2N + 1} columns.
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Power Method
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Power Method
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Pretraining via Supervised Learning

We construct the input of the Transformer as a context-augmented matrix
given by the following:

H =

[
X
P

]
∈ RD×N , P =


p̃1,1, . . . , p̃1,N
p̃2,1, . . . , p̃2,N

...
p̃D−d,1, . . . , p̃D−d,N

 ∈ R(D−d)×N ,

The auxillary matrix P contains contextual information; the design also
maked sure P is unrelated to X. The experiments show that P is not
necesssary for the pre-trained Transformer to performer PCA with high
accuracy.

Output:

TFθ(H) =
[
v̂⊤1 . . . v̂⊤k

]⊤ ∈ Rd×k

which corresponds to the estimated principal eigenvectors of the matrix X.
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The Learning Problem

Consider a set of samples {X(i)}i∈[n] i.i.d. sampled from some distribution
pX, we construct their oracle top-k principal components as

V(i) =
[
vi,⊤
1 . . . vi,⊤

k

]⊤
and the context-augmented input matrix as Hi

for each Xi. Then, the pretraining procedure is given by minimizing the
following objective for some convex loss function
L(·, ·) : Rd×k × Rd×k → R,

θ̂ = argmin
θ∈Θ(Bθ,BM )

n∑
i=1

L(TFθ(H
(i)),V(i)). (1)

Here we consider Θ(Bθ) := {θ : ∥θ∥ ≤ Bθ,maxℓM
ℓ ≤ BM} to be the

space of parameters. We also consider guarantees when
L(x1,x2) := ∥x1 − x2∥2 in the theory.
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The Design of Auxillary Matrix

Our design of the matrix P consists of three parts:
1 Place Holder. For ℓ ∈ {1} ∪ [4 : k + 3] and i ∈ [N ], we let

p̃ℓ,i = 0 ∈ Rd×1. The placeholders in P record the intermediate
results in the forward propagation. Recall that k is the number of
eigenvectors we hope to recover.

2 Identity Matrix. We let
[
p̃2,1 . . . p̃2,N

]
=

[
Id 0d×(N−d)

]
. The

identity matrix in P helps us screen out all the covariates X in the
forward propagation.

3 Random Samples on the Hypersphere. We let p̃3,1, . . . p̃3,k be the i.i.d.
samples uniformly distributed on Sd−1. The random samples on the
sphere correspond to the initial vectors v0,ℓ for ℓ ∈ [k] in algorithm 1.

The auxiliary matrix is designed for purely technical reasons. Moreover, our
experiments suggest that such an auxiliary matrix is not necessary for the
task.
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Transformer Approximation of Power Method

Theorem 7
Assume that the eigenvalues of XX⊤ to be λ1 > λ2 > . . . > λk > . . .. Let
∆ := min1≤i<j≤k |λi − λj |. Assume that the initialized vectors
p̃3,1, . . . p̃3,N satisfy p̃⊤

3,ivi ≥ δ for all i ∈ [k] and make the rest of the
vectors 0. Then, there exists a Transformer model with the number of
layers L = 2τ + 4k + 1 and the number of heads BM ≤ λd

1
C
ϵ2

with
τ ≤ log(1/ϵ0δ)

ϵ0
such that for all ϵ0, ϵ > 0, the final output

[
v1, . . . , vk

]
given

by the Transformer model achieves

∥vη+1 − vη+1∥2 ≤ Cτϵλ2
1 +

Cλ1
√
ϵ0

∆

k∏
i=1

5λi+1

∆
.
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Theorem 7 Continued

Moreover, consider the accuracy of multiple vs as a whole. There exists
θ ∈ Θ(Bλ1 , BM ) that satisfies

L(TFθ(H),V) ≤ Cτϵkλ2
1 + C

ϵ0λ
2
1

∆2

k−1∑
η=1

η∏
i=1

25λ2
i+1

∆2

1/2

.

The first error term comes from the approximation of the Power
Method iterations by transformers.
The second error term comes from finite iteration.
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A Special Case

The eigenvalues λ1 ≍ λ2 ≍ . . . ≍ λk ≍ ∆. Then our results boil down to

|TFθ(H)−
[
v⊤
1 ,v

⊤
2 , . . . ,v

⊤
k

]⊤|2 ≲ τϵkλ2
1 +

λ1

∆

√
kϵ0.

These results hide dimension d in the universal constant. We note that the
dimension significantly affects the approximation bound of Transformers.
This is mainly due to the limitations given by approximating high
dimensional functions by ReLU neural networks.
In the above theorem, our results rely on the random initialization of P.
We show that the conditions on p̃3,1, . . . , p̃3,N can be achieved through
sampling from isotropic Gaussians, given by the following lemma.
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Lemma

Lemma 8
Consider x to be a random vector sampled uniformly at random on Sd−1.
Let v be any unit length vector, then we have for all δ < 1

2d
−1,

P(|v⊤x| ≤ δ) ≤ 1√
π

√
δ + exp(−Cδ−

1
2 ). Therefore, for all δ < 1

2d
−1, the

event in theorem 7 is achieved with

P∃i ∈ [k] such that x⊤
i vi ≤

δ√
d
≤ k

√
δ√
π

+ k exp(−Cδ−1).

Given the approximation error provided by theorem 7, we further provide
the generalization error bound for the ERM defined
byθ̂ = argminθ∈Θ(Bθ,BM )

∑n
i=1 L(TFθ(H

(i)),V(i)). This requires us to
consider the following regularity conditions on the underlying distribution of
XX⊤ (which also translates to the distribution for the pre-training
instances X).
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Assumption 1 (Problems for Pretraining)

The distribution of XX⊤ supports on the following space

X := {A : A ∈ Sd
++, BX ≥ λ1(A) > λ2(A) > . . . > λk(A),

inf
1≤i<j≤k

λi(A)− λj(A) ≥ ∆}.

The above assumption can be generalized to a distribution that supports
X with high probability. Examples of such distribution include the Wishart
distribution under the Gaussian design.
Given the above assumption, we are ready to state the generalization
bound.
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Proposition

Proposition 9

Under assumption 1 and using the notations given by theorem 7, with
probability at least 1− ξ, the ERM solution θ satisfies

E[L(TFθ(H),V)
∣∣∣θ] ≤ inf

θ∈Θ(Bθ,BM )
E[L(TFθ(H),V)]

+ C

√
k3LBMd2 log(BX + k) + log(1/ξ)

n
,

where the expectation is taken over the new sample X.
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Corollary

Corollary 10
Under assumption 1, with probability at least
1− ξ − k

√
δ√
π
− k exp(−Cδ−1/2) for all δ < d−1 we have for all ϵ, ϵ0 > 0,

LPCA(θ,P) : = E[L(TFθ(H),V)
∣∣∣θ,P] ≲ τϵkλ2

1 +
ϵ0λ

2
1

∆2

k−1∑
η=1

η∏
i=1

25λ2
i+1

∆2

1/2

+

√
k3 log(δ/ϵ0)Bd

Xd2 log(BX + k) + log(1/ξ)

nϵ0ϵ2
.

If we consider optimizing the bound w.r.t. ϵ0 and ϵ, we obtain that
LPCA(θ,P) ≲ n−1/5 with high probability, given that the parameters and
the dimension d are of constant scales.
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Proof of Theorem 7

Our proof can be disected into the following setps: We construct a
Transformer with fixed parameters that performs:

1 The computation of the symmetrized covariate matrix;
2 The approximation of the power method;
3 The removal of the principal eigenvectors;
4 Adjust the dimension of the output through multiplying the two

matrices W̃0 and W̃1 on the left and right.
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1. The Covariate Matrix

Construct H =


X1, . . . ,XN

p̃1,1, . . . , p̃1,N

p̃2,1, . . . , p̃2,N
...

p̃ℓ,1, . . . , p̃ℓ,N

 =

[
X
P

]
, we let the number of heads

m = 2, and construct the first covariate layer as follows,

Vcov
1 = ID = −Vcov

2 , Qcov,⊤
1 Kcov

1 = −Q⊤
2 K2 =

[
0N+1×d Id 0

0 0 0

]
∈ RD×D,

(2)

p̃1,ℓ,j = 0, p̃2,ℓ,j =

{
1ℓ=j when ℓ ≤ d

0 when ℓ > d
. (3)
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1. The Covariate Matrix

Under the above constructions, we obtain that

Q⊤
1 K1H =

[
Id 0
0 0

]
∈ RD×N , Q⊤

2 K2H =

[
−Id 0
0 0

]
∈ RD×N ,

σ(H⊤Q⊤
1 K1H) + σ(H⊤Q⊤

2 K2H) =
[
X⊤,0

]
∈ RN×N .

We further obtain that

1

N

M∑
m=1

(VmH)× σ((QmH)⊤(KmH)) =

 0 0
XX⊤ ∈ Rd×d 0

0 0

 ∈ RD×D.

Therefore, the output is given by H̃cov =


X

XX⊤,0
p̃2,1, . . . , p̃2,N

p̃ℓ,1, . . . , p̃ℓ,N

.
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2. The Power Iteration

Step 1: Obtaining the vector given by XX⊤v.
Step 2: Approximation of the value of the inverse norm given by
1/∥XX⊤v∥2. We show that one can use the multihead ReLU Transformer
to achieve both goals simulatenously, whose parameters are given by

Vpow,1
1 = −Vpow,1

2 =

0(3d+1)×(2d+1) 0 0

0(d)×(2d+1) Id 0

0 0 0

 ,

Qpow,1
1 = −Qpow,1

1 =

0(d+1)×(d+1) 0 0

0d×(d+1) Id 0

0 0 0

 ,

Kpow,1
1 = Kpow,1

2 =

0(3d+1)×(3d+1) 0 0

0d×(3d+1) Id 0

0 0 0

 , p̃4,j = 0 for all j ∈ [N ].
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2. The Power Iteration

We can calculate that the output of the first power iteration layer is given
by

H̃pow,1 =



X
ỹ⊤

XX⊤,0
p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

XX⊤p̃3,1,0
p̃5,1, . . . , p̃5,N

...
p̃ℓ,1, . . . , p̃ℓ,N


.
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2. The Power Iteration

Then, using lemma, we design an extra attention layer that performs the
normalizing procedure, with the following parameters for all m ∈ [M ],

Vpow,2
m =

[
0d×(4d+1) cmId 0

0 0 0

]
, Qpow,2

m =

[
0d×(2d+1) Id 0

0 0 0

]
,

Kpow,2
m =


01×(3d+1) a⊤m 0

...
01×(3d+1) a⊤m 0

0(D−d)×(3d+1) 0 0

 .
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2. The Power Iteration

Then, given Vpow,2
m we can show that under the condition given by lemma,

we have

∥∥∥∥ M∑
m=1

Vpow,2
m H̃pow,1σ((Qpow,2

m H̃pow,1)⊤(Kpow,2
m H̃pow,1)) −

 04d+1
XX⊤p̃3,1

∥XX⊤p̃3,1∥2
−XX⊤p̃3,1,0

0

∥∥∥∥
∞

< ϵ,

Moreover, we can further achieve that∥∥∥∥∥
M∑

m=1

Vpow,2j
m H̃pow,1σ((Qpow,2

m H̃pow,1)⊤(Kpow,2
m H̃pow,1)) −

 04d+1
XX⊤p̃3,1

∥XX⊤p̃3,1∥2
−XX⊤p̃3,1,0

0

∥∥∥∥∥
2

< ϵ∥XX⊤p̃3,1∥2.
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2. The Power Iteration

Hence, using the fact that H̃pow,2 =
H̃pow,1 +

∑m
i=1V

pow,2
m H̃pow,1σ((Qpow,2

m H̃pow,1)⊤(Kpow,2
m H̃pow,1)), we

obtain that

∥∥∥∥∥H̃pow,2 −



X
ỹ

XX⊤,0
p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N
XX⊤p̃3,1

∥XX⊤p̃3,1∥2
, . . .0

...


∥∥∥∥∥
2

< ϵ∥XX⊤p̃3,1∥2.

Then we construct another attention layer, which performs similar
calculations as that of pow, 1 but switch the rows of p̃3,1 with that of
XX⊤p̃3,1

∥XX⊤p̃3,1∥2
. Our construction for the third layer is given by
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2. The Power Iteration

Vpow,3
1 = −Vpow,3

2 =

0(3d+1)×(2d+1) 0 0

0d×(2d+1) Id 0

0 0 0

 ,

Qpow,3
1 = −Qpow,3

2 =

0(3d+1)×(d+1) 0 0

0d×(d+1) Id 0

0 0 0

 ,

Kpow,3
1 = Kpow,3

2 =

0(4d+1)×(4d+1) 0 0

0d×(4d+1) Id 0

0 0 0

 , p̃4,j = 0 for all j ∈ [N ].

Consider we are doing in total of τ power iterations, we can set for all
τ ∈ N∗,

Vpow,2τ+1
m = Vpow,3

m , Qpow,2τ+1
m = Qpow,3

m , Kpow,2τ+1
m = Kpow,3

m ,

Vpow,2τ+2
m = Vpow,4

m , Qpow,2τ+2
m = Qpow,4

m , Kpow,2τ+2
m = Kpow,4

m .
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2. The Power Iteration

Therefore, taking another layer of normalization, we can show that

∥∥∥∥∥H̃pow,3 −



X
ỹ

XX⊤,0
p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N
(XX⊤)2p̃3,1

∥XX⊤p̃3,1∥22
,0

p̃5,1, . . . , p̃5,N
...

p̃ℓ,1, . . . , p̃ℓ,N



∥∥∥∥∥
2

≤ 2ϵ∥XX⊤∥2.
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2. The Power Iteration

Then, using the sublinearity of errors, we can show that for τ ∈ N,

∥∥∥∥∥H̃pow,2τ+2 −



X
ỹ

XX⊤,0
p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

p̃
(τ)
3,1 ,0

p̃5,1, . . . , p̃5,N
...

p̃ℓ,1, . . . , p̃ℓ,N



∥∥∥∥∥
∞

≤ τϵ∥XX⊤∥2, p̃
(τ)
3,1 =

XX⊤p̃
(τ−1)
3,1

∥XX⊤p̃
(τ−1)
3,1 ∥2

,

p̃
(0)
3,1 = p̃3,1.
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2. The Power Iteration

If we denote vi as the eigenvector corresponds to the i th largest
eigenvalue of XX⊤. Let the eigenvalues of XX⊤ be denoted by
λ1 > λ2 > · · · > λn. Given |p̃⊤

3,1v1| > δ and |
√
λ1 −

√
λ2| = Ω(1).

Theorem 3.11 in blum2020foundations page 53 shows that given
k = log(1/ϵ0δ)

2ϵ0
and ∥p̃(τ)

3,1∥2 = ∥v1∥2 = 1, one immediately obtains that

p̃
(τ),⊤
3,1 v1 ≥ 1− ϵ0, ∥p̃(τ)

3,1 − v1∥2 =
√

2− 2v⊤
1 p̃

(τ)
3,1 =

√
2ϵ0.

And we also consider the approximation of the maximum eigenvalue. Note
that using ∥v1∥2 = 1, we have

∥XX⊤∥2 = ∥XX⊤v1∥2 = ∥XX⊤p̃
(τ)
3,1 +XX⊤(v1 − p̃

(τ)
3,1)∥2

≤ ∥XX⊤p̃
(τ)
3,1∥2 + ∥XX⊤(v1 − p̃

(τ)
3,1)∥2

≤ ∥XX⊤p̃
(τ)
3,1∥2 + ∥XX⊤∥2∥v1 − p̃

(τ)
3,1∥2.

Similarly we can also derive that
∥XX⊤∥2 ≥ ∥XX⊤p̃

(τ)
3,1∥2 − ∥XX⊤∥2∥v1 − p̃3,1∥2. Then we show that∣∣∣∥XX⊤∥2 − ∥XX⊤p̃

(τ)
3,1∥2

∣∣∣ ≤ ∥XX⊤∥2∥v1 − p̃
(τ)
3,1∥2 ≤

√
2ϵ0∥XX⊤∥2.Qinyan Liu How Transformers Perform PCA and Sparse RecoveryJuly 6, 2025 38 / 60



3. The Removal of principal Eigenvectors.

Step 1: The computation of the estimated eigenvalue ∥XX⊤p̃3,1∥2.
Step 2: The construction of the low rank update p̃3,1p̃

⊤
3,1. For step (1), we

consider the following construction:

Vrpe,1
1 = −Vrpe,1

2 =

0(3d+1)×(2d+1) 0 0

0d×(2d+1) Id 0

0 0 0

 ,

Qrpe,1
1 = −Qrpe,1

2 =

0(d+1)×(d+1) 0 0

0d×(d+1) Id 0

0 0 0

 ,

Krpe,1
1 = Krpe,1

2 =

0(4d+1)×(4d+1) 0 0

0d×(4d+1) Id 0

0 0 0

 .
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3. The Removal of principal Eigenvectors.

Note that the above construction is similar to the first layer of the power
method. Under this construction, we can show that

H̃rpe,1 = H̃pow,2τ+2+∑
m∈{1,2}

Vrpe,1
m σ((Qrpe,1

m H̃pow,2τ+2)⊤(Krpe,1
m H̃pow,2τ+2)),

∥∥∥∥∥H̃rpe,1 −



X
ỹ

XX⊤,0
p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

p̃
(τ)
3,1 ,0

XX⊤p̃
(τ)
3,N ,0

p̃6,1, . . . , p̃6,N
...

p̃ℓ,1, . . . , p̃ℓ,N


=:Hrpe,1

∥∥∥∥∥
2

≤ Cτϵ∥XX⊤∥22, p̃5,i = 0, ∀i ∈ [N ].
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3. The Removal of principal Eigenvectors.

Then, we construct the next layer, using the notations in lemma, for
M ≥ ∥XX⊤∥d2

C(d)
ϵ2

for all m ∈ [M ] we have

Vrpe,2
m =

[
0d×(4d+1) dmId 0

0 0 0

]
, Qrpe,2

m =

[
0d×(2d+1) Id 0

0 0 0

]
,

Krpe,2
m =


01×(5d+1) b⊤

m 0
...

01×(5d+1) b⊤
m 0

0(D−d)×(5d+1) 0 0

 .

Given the above construction, we subsequently show that

(Qrpe,2
m H̃rpe,1)⊤ =

[
Id×d 0
0 0

]
, Krpe,2

m H̃rpe,1 =


b⊤
mXX⊤p̃

(τ)
3,1 0

...
...

b⊤
mXX⊤p̃

(τ)
3,1 0

0(D−d)×1 0

 .
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3. The Removal of principal Eigenvectors.

Hence, given the construction of Vrpe,2
m , we can show that H̃rpe,2 satisfies

H̃rpe,2 = H̃rpe,1 +
∑

m∈[M ]

Vrpe,2
m H̃rpe,1 × σ((Krpe,2

m H̃rpe,1)⊤(Qrpe
m H̃rpe,1))

= Hrpe,1 +
∑

m∈[M ]

Vrpe,2
m Hrpe,1 × σ((Krpe,2

m Hrpe,1)⊤(Qrpe,2
m Hrpe,1))

=:Hrpe,1

+ (H̃rpe,1 −Hrpe,1) +
∑

m∈[M ]

Vrpe,2
m H̃rpe,1 × σ((Krpe,2

m H̃rpe,1)⊤Qrpe,2
m H̃rpe,1)

−
∑

m∈[M ]

Vrpe,2
m H̃rpe,1 × σ((Krpe,2

m H̃rpe,1)⊤Qrpe,2
m H̃rpe,1).

Denote the sum of the first two terms as ˆHrpe,1.
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3. The Removal of principal Eigenvectors.

We note that by lemma we can show that

∥∥∥∥∥Hrpe,1 −



X
ỹ

XX⊤,0
p̃2,1 . . . , p̃2,N

p̃3,1 . . . , p̃3,N

p̃
(τ)
3,1 ,0

∥XX⊤p̃
(τ)
3,N∥

1
2
2 p̃

(τ)
3,1 ,0

...
p̃ℓ,1, . . . p̃ℓ,N



∥∥∥∥∥
2

≤ Cτϵ∥XX⊤∥22.

Then the rest of the proof focuses on showing that the rest of the terms
are small. Already we have

∥H̃rpe,1 −Hrpe,1∥2 ≤ τϵ∥XX⊤∥22.

And for the last term, we can show that
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3. The Removal of principal Eigenvectors.
∥∥∥ ∑
m∈[M ]

Vrpe,2
m H̃rpe,1 × σ((Krpe,2

m H̃rpe,1)⊤(Qrpe,2
m H̃rpe,1))−

∑
m∈[M ]

Vrpe,2
m Hrpe,1 × σ((Krpe,2

m Hrpe,1)⊤(Qrpe,2
m Hrpe,1))

∥∥∥
2
≤ Cτϵ∥XX⊤∥22.

Collecting the above pieces, we finally show that

∥∥∥∥∥H̃rpe,2 −



X
XX⊤,0

p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

p̃
(τ)
3,1 ,0

∥XX⊤p̃
(τ)
3,1∥

1
2
2 p̃

(τ)
3,1 ,0

p̃6,1, . . . , p̃6,N
...

p̃ℓ,1, . . . , p̃ℓ,N



∥∥∥∥∥
2

≤ Cτϵ∥XX⊤∥22.
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3. The Removal of principal Eigenvectors.

Then we construct another layer to remove the principal components from
the matrix XX⊤, given by

−Vrpe,3
1 = Vrpe,3

2 =

0(d+1)×(4d+1) 0 0

0 Id 0
0 0 0

 ,

Qrpe,3
1 = −Qrpe,3

2 =

[
0d×(4d+1) Id 0

0 0 0

]
,

Krpe,3
1 = Krpe,3

2 =

[
0d×(4d+1) Id 0

0 0 0

]
.
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3. The Removal of principal Eigenvectors.

Therefore, we can further show that

H̃rpe,3 = H̃rpe,2 +

2∑
m=1

Vrpe,3
m H̃rpe,2 × σ((Qrpe,3

m H̃rpe,2)⊤Krpe,3
m H̃rpe,2)

satisfies

∥∥∥∥∥H̃rpe,3 −



X

XX⊤ − ∥XX⊤p̃
(τ)
3,1∥2p̃

(τ)
3,1p̃

(τ),⊤
3,1 ,0

p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

p̃
(τ)
3,1 ,0

p̃5,1, . . . , p̃5,N
...

p̃ℓ,1, . . . , p̃ℓ,N



∥∥∥∥∥
2

≤ Cτϵ∥XX⊤∥22.
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3. The Removal of principal Eigenvectors.

And then we proceed to recover the rest of the k principal eigenvectors
using similar model architecture given by the ones used by the Power
Iterations. For the computation over the τ -th eigenvector, we denote
H̃pow,η,1 till H̃pow,η,τ to be the intermediate states corresponding to the
η-th power iteration. We denote H̃rpe,η,τ0 to be the output of η-th removal
of principal eigenvector layers for the τ -th eigenvector. Furthermore, we
iteratively define

A1 = XX⊤ − ∥XX⊤p̃
(τ)
3,1∥2p̃

(τ)
3,1p̃

(τ),⊤
3,1 , Ai+1 = Ai − ∥Aip̃

(τ)
3,i ∥2p̃

(τ)
3,i p̃

(τ),⊤
3,i , ∀i ∈ [k].

Then, applying the subadditivity of the 2-norm, we can show that
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3. The Removal of principal Eigenvectors.

∥∥∥∥∥H̃rpe,4,k −



X
Ak+1,0

p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

p̃
(τ)
3,1 ,0

p̃
(τ)
3,2 ,0
...

p̃
(τ)
3,k,0



∥∥∥∥∥
2

≤ Cτkϵ∥XX⊤∥22.

For simplicity, we denote Ã =


X

Ak+1,0
p̃2,1, . . . , p̃2,N

p̃3,1, . . . , p̃3,N

 and P̃ =


p̃
(τ)
3,1

p̃
(τ)
3,2
...

p̃
(τ)
3,k

 from

here.
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4. Finishing Up

Our construction gives the following:

W̃0 =
[
0, Ikd

]
, W̃1 =

[
1

0N−1

]
.

And we can show that

∥∥∥∥∥W̃0H̃
rpe,4,kW̃1 −


p̃
(τ)
3,1

p̃
(τ)
3,2
...

p̃
(τ)
3,k


∥∥∥∥∥
2

≤ Cτkϵ∥XX⊤∥22.

We further use the result given by lemma, denote aη := ∥vη − p̃
(τ)
3,η∥2,

λ̂η = ∥Aηp̃
(τ)
3,η∥2, and bη := |λη − λ̂η| for η ∈ [k], we obtain that for all

η ≥ 1, given the number of iterations τ ≥ C log(1/ϵ0δ)
2ϵ0

where the constant
value C depends on d,
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4. Finishing Up

aη+1 ≤
maxi∈[η] bi +

∑η
i=1 2λiai

∆
, bη+1 ≤

2λη+1

∆
max
i∈[η]

bη +

η∑
i=1

2λiai + λη+1

√
2ϵ0.

Further note that the starting point is given by a1 ≤
√
2ϵ0, b1 ≤ λ1

√
2ϵ0.

Introducing Aη =
∑η

i=1 2λiai, we obtain that
Aη+1 =

∑η+1
i=1 2λiai = Aη + 2λη+1aη+1 which alternatively implies that

1

2λη+1
(Aη+1 −Aη) ≤

maxi∈[η] bi +Aη

∆
,

bη+1 ≤
2λη+1

∆
max
i∈[η]

bη +Aη + λη+1

√
2ϵ0.
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4. Finishing Up

We use the fact λη

∆ > 1 for all η ∈ [k] to show the following

Aη+1 + max
i∈[η+1]

bi ≤
5λη+1

∆
(Aη +max

i∈[η]
bi) + λ1

√
2ϵ0, A1 + b1 = 2λ1

√
2ϵ0,

which implies that

Aη+1 + max
i∈[η+1]

bi+
λ1

√
2ϵ0

5λ1
∆ − 1

≤ 5λ1

∆
Aη +max

i∈[η]
bi +

λ1
√
2ϵ0

5λ1
∆ − 1

,

Aη+1 + max
i∈[η+1]

bi+
λ1

√
2ϵ0

5λ1
∆ − 1

≤ A1 + b1 +
λ1

√
2ϵ0

5λ1
∆ − 1

η∏
i=1

5λi+1

∆

= λ1

√
2ϵ02 +

1
5λ1
∆ − 1

η∏
i=1

5λi+1

∆
.
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4. Finishing Up

Therefore, for η ≤ k, we have for all η ∈ [k − 1],

aη+1 ≤
1

∆
λ1

√
2ϵ02 +

1
5λ1
∆ − 1

η∏
i=1

5λi+1

∆
− λ1

√
2ϵ0

5λ1
∆ − 1

,

bη+1 ≤
2ληλ1

√
2ϵ0

∆
2 +

1
5λ1
∆ − 1

η∏
i=1

5λi+1

∆
+ λη+1

√
2ϵ0.

Therefore collecting pieces, we conclude that there exists a transformer
with number of layers 2τ + 4k + 1 and number of heads M ≤ λd

1
C(d)
ϵ2

such
that the final output v1, . . . , vk given by the Transformer model satisfy
∀η ∈ [k − 1],

∥vη+1 − vη+1∥2 ≤ Cτϵλ2
1 +

1

∆
λ1

√
2ϵ02 +

1
5λ1
∆ − 1

η∏
i=1

5λi+1

∆
− λ1

√
2ϵ0

5λ1
∆ − 1

.

And the rest of the result directly follows.
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Overview

1 Transformers
Encoder-based Transformers
Decoder-based Transformers

2 How Transformers Perform PCA

3 How Transformers Perform Sparse Recovery: A brief example of
decoder-based Transformers
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Sparse Recovery: Formulated as LASSO Problems

β(k+1) = Sα/L(β
(k) − 1

L
X⊤(Xβ(k) − y)).

Here α is a coefficient controlling the sparsity penalty. We denote the
transpose of the i-th row in X by xi, i.e., xi = [X⊤]:,i.
Algorithms:

Gradient Descent: inefficent
Learning Iterative Shrinkage Thresholding Algorithm (LISTA):
feed-forward neural network
Classical variants of LISTA, e.g. LISTA-CP The update rule in the
k-th iteration:

β(k+1) = Sθ(k)

(
β(k) − (D(k))⊤(Xβ(k) − y)

)
, (4)

where {θ(k),D(k)} are learnable parameters.
Transformer: LISTA-VM(LISTA with varying measurements)
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Transformer Architecture

In this work, we set the activation function as the element-wise ReLU
function. Next, we define the one-layer decoder-based Transformer
structure.

Definition 11 (Transformer layer)
A one-layer decoder-based Transformer is parameterized by
Θ := {W1,W2,b, (Vm,Qm,Km)m∈[M ]}, denoted as θ. Therefore, give
input sequence H ∈ Rd×N , the output sequence is:

TFθ(H) = MLP{W1,W2,b}

(
Attn{(Vm,Qm,Km)}(H)

)
.
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Embedding

Given an in-context sparse recovery instance I = (X,y,xN+1) we embed
the instance into an input sequence H(1) ∈ R(2d+2)×(2N+1) as follows:

H(1)(I) =


x1 x1 · · · xN xN xN+1

0 y1 · · · 0 yN 0

β
(1)
1 β

(1)
2 · · · β

(1)
2N−1 β

(1)
2N β

(1)
2N+1

1 0 · · · 1 0 1

 , (5)

where {β(1)
i }i∈[2N+1] ∈ Rd are implicit parameter vectors initialized as 0d,

and xi is the i-th column of the transposed measurement matrix, i.e,
[X⊤]:,i. We note that a similar embedding structure is adopted in
bai2023transformers.
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Assumption 2

For x ∼ Px and β∗ ∼ Pβ , we assume ∥x∥ ≤ bx and ∥β∗∥1 ≤ bβ almost
surely. Besides, we consider the noiseless scenario where ϵ = 0.
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Equivalence between ICL and LISTA-VM

Theorem 12 (Equivalence between ICL and LISTA-VM)

With the Transformer structure described above, under Assumption 2,
there exists a set of parameters in the Transformer so that for any
k ∈ [1 : K], n ∈ [N ], we have

β
(k+1)
2n+1 = Sθ(k)

(
β
(k)
2n+1 −

1

2n+ 1
M(k)[X]⊤1:n,:([X]1:n,:β

(k)
2n+1 − y1:n)

)
, (6)

where M(k) ∈ Rd×d is embedded in the k-th Transformer layer.
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Convergence of ICL

Theorem 13 (Convergence of ICL)

Let δ ∈ (0, 1), N0 = 8(4S − 2)2 log d+logS−log δ
c ,

αn = − log
(
1− 2

3γ + γ(2S − 1)
√

log d−log δ
nc +

√
logS−log δ

nc

)
, where c is a

positive constant and γ is a positive constant satisfies γ ≤ 3
2 . For a

K-layer Transformer model with the structure described previously, under
Assumption 2, there exists a set of parameters such that for any randomly
generated sparse recovery instance and any n ∈ [N0 : N ], with probability
at least 1− δ, we have ∥∥β(K+1)

2n+1 − β∗∥∥ ≤ bβe
−αnK .
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Approximation of Read-out Functions

Theorem 14

Under the same setting, for any n ∈ [N0 + 1 : N + 1], with probability at
least 1− nδ − δ′, we have

∥yn − ŷn∥ ≤ bx(1−
2

3
γ)K +

c4K√
n
(1− 2

3
γ)K−1

for a linear read-out function, and with probability at least 1− δ, we have
∥yn − ŷn∥ ≤ c5e

−αnK for a query read-out function, where c4, c5 are
constants.
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