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Introduction

Background Introduction

Motivation:

Transformers is powerful tools in machine learning, yet their capacity
to approximate diverse algorithmsâboth within in-context learning
(ICL) and beyond ,lacks a unified understanding.

Core Contradiction:

balancing architectural flexibility with rigorous theoretical guarantees
on emulating specific algorithms, whether adapting to new tasks via
contextual inputs or learning generalizable procedures through
pretraining.
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Introduction

ICL content

Transformers are Deep Optimizers: Provable In-Context Learning
for Deep Model Training

demonstrates that Transformers can tightly approximate gradient
descent, constructing a (2N+4)L-layer model to simulate L steps of
gradient descent for an N-layer ReLU network with provable bounds
on approximation error and convergence.

Transformers as decision makers: Provable in-context reinforcement
learning via supervised pretraining:

extends this to in-context reinforcement learning, showing that
supervised pretrained Transformers approximate near-optimal
algorithms (e.g., LinUCB, Thompson sampling) using interaction
trajectories as context, with generalization error linked to model
capacity and distribution divergence.

Hang Yang Algorithm Simulators July 3, 2025 5 / 64



Introduction

ICL area

Transformers learn to achieve second-order convergence rates for
in-context linear regression

focuses on in-context linear regression, proving Transformers achieve
second-order convergence by approximating efficient linear regression
algorithms within the context.

Provable In-context Learning for Mixture of Linear Regressions
using Transformers

explores how Transformers leverage contextual inputs to approximate
mixture of linear regression algorithms, capturing multiple linear
components and emulating the fitting process through in-context
adaptation.
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Introduction

Other area

Learning spectral methods by transformers

investigates approximation of spectral methods in unsupervised
learning, theoretically and empirically verifying that pretrained
Transformers learn algorithms like PCA and Gaussian mixture model
clustering by emulating iterative recovery procedures.

Transformers versus the EM Algorithm in Multi-class Clustering

connects Softmax attention layers to the EM algorithm for
multi-class clustering, providing approximation bounds for the
Expectation and Maximization steps and showing Transformers
achieve minimax optimal rates.
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content
1.Transformers learn to achieve second-order convergence rates for

in-context linear regression

Background Introduction

Motivation:

Transformers demonstrate strong performance in In-Context Learning
(ICL) (e.g., the few-shot learning capability of GPT-3), but their
internal mechanisms remain unclear.

The traditional view posits they might mimic Gradient Descent (GD),
yet this paper proposes a new perspective: Transformers may achieve
efficient ICL via second-order optimization methods (e.g., iterative
Newton’s method).

Core Contradiction:

As a first-order method, GD has a convergence rate of O(κ log(1/ϵ)),
while second-order methods (e.g., Newton’s method) can reach
O(log κ+ log log(1/ϵ)), which is exponentially faster.
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1.Transformers learn to achieve second-order convergence rates for

in-context linear regression

Research Objectives

Goals:

Verify whether Transformers exhibit second-order convergence
properties in ICL.

Theoretically and experimentally reveal their correspondence with
iterative Newton’s method.
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1.Transformers learn to achieve second-order convergence rates for

in-context linear regression

Transformer
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content
1.Transformers learn to achieve second-order convergence rates for

in-context linear regression

Linear Regression Task

In this paper, we focus on the following linear regression task. The task
involves n examples {xi , yi}ni=1 where xi ∈ Rd and yi ∈ R. The examples
are generated from the following data generating distribution PD,
parameterized by a distribution D over (d × d) positive semi-definite
matrices.
For each sequence of n in-context examples, we first sample a
ground-truth weight vector

w∗ i.i.d.∼ N (0, I ) ∈ Rd

and a matrix
Σ

i.i.d.∼ D
For i ∈ [n], we sample each

xi
i.i.d.∼ N (0,Σ)

The label yi for each xi is given by

yi = w∗⊤xi

Note that for much of our experiments D is only supported on the identity
matrix I (hence Σ = I ), but we also consider some distributions over
ill-conditioned matrices, which give rise to ill-conditioned regression
problems. Most of our results are on this noiseless setup and results with
the noisy setup are in Appendix A.3.2.
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1.Transformers learn to achieve second-order convergence rates for

in-context linear regression

Connection Between Iterative Newtonâs Method and
Transformers

1. Principles of Iterative Newtonâs Method

Goal: Solve the least-squares solution of linear regression:

ŵ =
(
X⊤X

)†
X⊤y

where the initial matrix is defined as:

M0 = αS (S = X⊤X )

Iterative Update:

Mk+1 = 2Mk −MkSMk , ŵk = MkX
⊤y

Key Insight: Approximates the pseudoinverse of matrix S iteratively.
Each iteration leverages second-order information (curvature), leading
to a convergence rate logarithmically dependent on the condition
number κ(S) â superior to Gradient Descent (GD).
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1.Transformers learn to achieve second-order convergence rates for

in-context linear regression

Theorem1: Background and Setup

2. Order Mechanism Theory of Transformers

Core Problem: Analyze how Transformers achieve fast convergence
in in - context linear regression.

Theorem Setup:
▶ Assume that P ∼ π is almost surely well - posed for in - context linear

regression (Assumption A) with canonical parameters.
▶ Consider a Transformer with L = O

(
κ log(κN/σ)

)
layers, M = 3

heads, D ′ = 0 (attention - only), and B = O(
√
κd).

▶ For N ≥ Õ(d), with probability at least 1− ξ (over training instances
Z(1:n)). Here, N represents the number of training tasks, n is the
number of in - context examples, d is the feature dimension, κ is the
condition number, and σ is related to the noise level.
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1.Transformers learn to achieve second-order convergence rates for

in-context linear regression

Theorem 1: Core Formula

Theorem 1: Pretraining Transformers for In - Context Linear
Regression

The solution θ̂ of (TF - ERM) satisfies:

Licl(θ̂)−EP∼πE(x ,y)∼P

[
1

2

(
y − ⟨w⋆

P, x⟩
)2] ≤ Õ

(√
κ2d2 + log(1/ξ)

n
+

dσ2

N

)

where Õ(·) hides polylogarithmic factors in κ,N, 1/σ.
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1.Transformers learn to achieve second-order convergence rates for

in-context linear regression

Theorem 1: Formula Interpretation and Conclusions

Left - hand side: Licl(θ̂) is the in - context learning loss of the

solution θ̂, and EP∼πE(x ,y)∼P

[
1
2

(
y − ⟨w⋆

P, x⟩
)2]

represents the

expected loss of the optimal solution. The difference is the excess risk
of the Transformer’s solution.

Right - hand side - first term:

√
κ2d2+log(1/ξ)

n is related to the
sample complexity. It shows that as the condition number κ increases
or the number of in - context examples n decreases, the risk bound
grows. The log(1/ξ) term is related to the probability guarantee.
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content
1.Transformers learn to achieve second-order convergence rates for

in-context linear regression

Theorem 1: Formula Interpretation and Conclusions

Right - hand side - second term: dσ2

N depends on the feature
dimension d , noise level σ, and the number of training tasks N. It
reflects how well the model generalizes across different tasks.

Optimal Regime: When n ≥ Õ
(
κ2N/σ2

)
, the bound achieves

Bayesian optimal excess risk Õ
(
dσ2

N

)
, which means the Transformer

can achieve near - optimal performance under certain conditions.

Intuitive Interpretation: The Transformerâs architecture, especially
the attention mechanism and MLP layers, enables it to implicitly
perform second - order optimization similar to Newton’s method,
leading to efficient convergence in in - context learning tasks.
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1.Transformers learn to achieve second-order convergence rates for

in-context linear regression

Experimental Design

Task & Data:

Task: Linear regression.

Data: Generated as yi = w∗⊤x i , including ill-conditioned data
(condition number κ = 100).

Comparison Algorithms:

Iterative Newtonâs method, Gradient Descent (GD), LSTM.

Metrics:

Prediction error, convergence rate, weight vector similarity.
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1.Transformers learn to achieve second-order convergence rates for

in-context linear regression

Key Result Analysis

1. Convergence Rate Comparison :

Transformers and Iterative Newtonâs method exhibit superlinear
convergence, while GD shows sublinear convergence.

Example: The error of Transformer at Layer 8 matches Newtonâs
method after 3 iterations, yet GD requires hundreds of iterations to
reach similar error levels.
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content
1.Transformers learn to achieve second-order convergence rates for

in-context linear regression

Key Result Analysis

2. Robustness on Ill-Conditioned Data :

Transformers maintain fast convergence under ill-conditioned data,
while GD performance degrades significantly â verifying their ability
to leverage second-order information for curvature correction.
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content
1.Transformers learn to achieve second-order convergence rates for

in-context linear regression

Key Result Analysis

3. Comparison with LSTM :

LSTM shows high error that does not improve with more layers,
indicating its inability to emulate second-order methods.

In contrast, Transformerâs layer-wise iterative properties are
prominent.
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content
1.Transformers learn to achieve second-order convergence rates for

in-context linear regression

Key Result Analysis

4.best match step :

The best matching steps are highlighted in yellow. Transformers layers
show a linear trend with Iterative Newton steps but an exponential
trend with GD. This suggests Transformers and Iterative Newton have
the same convergence rate that is exponentially faster than GD.
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2.Transformers are Deep Optimizers: Provable In-Context

Learning for Deep Model Training

Overview

core:Investigating the ability of Transformers to simulate the training
process of deep models through in-context learning (ICL), with a
focus on utilizing ICL to implicitly train deep neural networks via
gradient descent.

meaning:If a base model can be used to train multiple other models,
it can reduce the cost of pre-training and make the base model more
accessible to the general public.
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content
2.Transformers are Deep Optimizers: Provable In-Context

Learning for Deep Model Training

Main contribution

Approximation by ReLU-Transformer:begin with the ReLU-based
transformer. For a broad class of smooth empirical risks, we construct
a (2N +4)L-layer transformer to approximate L steps of in-context
gradient descent on the N -layer feed-forward networks with the same
input and output dimensions (Theorem 1).

Approximation by Softmax-Transformer:Extend our analysis to the
Softmax-transformer,give a construction of a 4L-layer Softmax
transformer to approximate L steps of gradient descent to ensure a
qualified approximation error at each point to achieve universal
approximation capabilities of the Softmax-based Transformer.

Experimental Validation:We assess the ICL capabilities of
transformers by training 3-, 4-, and 6-layer networks. The numerical
results show that the performance of ICL matches that of training N
-layer networks.
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2.Transformers are Deep Optimizers: Provable In-Context

Learning for Deep Model Training

Approximation by ReLU-Transformer

Conditions

Fix Bv , η, ϵ > 0, L ≥ 1; input sequences from (2.1) with ∥xi∥2 ≤ Bx ,
∥yi∥2 ≤ By .

Functions r(t), r ′(t), u(t, y)[k] are Lr , Lr ′ , Ll -Lipschitz continuous and
C 4-smooth.

w ∈ W ⊂ {[vjk ] : ∥vjk∥2 ≤ Bv}; ProjW is an MLP with ∥θ∥ ≤ Cw .

Transformer Existence

A (2N + 4)L-layer transformer NNθ with L blocks:

NNθ = TFN+2
θ ◦ EWMLNθ ◦ TF 2

θ ◦ · · · ◦ TFN+2
θ ◦ EWMLNθ ◦ TF 2

θ

Parameters satisfy:
▶ Heads: maxM l ≤ Õ(ϵ−2)
▶ Dimensions: maxD l ≤ O(NK 2) + Dw

▶ Norms: maxBθl ≤ O(η) + Cw + 1
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content
2.Transformers are Deep Optimizers: Provable In-Context

Learning for Deep Model Training

Core Formula

Theorem 1: ICGD Implementation

For input H(0), NNθ(H
(0)) performs L steps of ICGD on risk (2.2).

At layer (2N + 4)l , output h
((2N+4)l)
i = [xi ; yi ; w̄

(l); 0; 1; ti ] with:

w̄ (l) = ProjW

(
w̄ (l−1) − η∇Ln(w̄

(l−1)) + ϵ(l−1)
)

Error term: ∥ϵ(l−1)∥2 ≤ ηϵ; w̄ (0) = 0.
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content
2.Transformers are Deep Optimizers: Provable In-Context

Learning for Deep Model Training

Approximation by Softmax-Transformer

Theorem 6 :In-Context Gradient Descent on General Risk Function

Fix any Bw , ϵ > 0, L ≥ 1.

Input sequences from (2.1) with upper bounds Bx ,By such that
∥yi∥max ≤ By , ∥xi∥max ≤ Bx for i ∈ [n].

w is a closed domain with ∥w∥max ≤ Bw ; ProjW projects into W and
is an MLP.

Loss function ℓ(w , xi , yi ) has L-Lipschitz gradient; empirical loss
Ln(w) = 1

n

∑n
i=1 ℓ(w , xi , yi ).
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content
2.Transformers are Deep Optimizers: Provable In-Context

Learning for Deep Model Training

Theorem 6: In-Context Gradient Descent on General Risk
Function

Conclusion

There exists a transformer NNθ that implements L steps of in-context
gradient descent on Ln(w).

For every l ∈ [L], the 4l-th layer outputs h
(4l)
i = [xi ; yi ; w̄

(l); 0; 1; ti ]
for all i ∈ [n + 1].

Approximation gradients satisfy:

w̄ (l) = ProjW

(
w̄ (l−1) − η∇Ln(w̄

(l−1)) + ϵ(l−1)
)
, w̄ (0) = 0

Error term: ∥ϵ(l−1)∥2 ≤ ηϵ.
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2.Transformers are Deep Optimizers: Provable In-Context

Learning for Deep Model Training

Frame Title
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content
3.Transformers as decision makers: Provable in-context

reinforcement learning via supervised pretraining.

Overview

Core: Investigating the in-context reinforcement learning (ICRL)
capabilities of supervised-pretrained transformers, focusing on their
ability to act as decision makers by imitating and implementing
reinforcement learning algorithms.

Meaning: Providing theoretical foundations for using transformers in
reinforcement learning, enabling them to adapt to unseen
environments through in-context learning and reducing the need for
environment-specific retraining.
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content
3.Transformers as decision makers: Provable in-context

reinforcement learning via supervised pretraining.

Main Contributions

Theoretical Framework: Proposing a general framework for
supervised pretraining in meta-reinforcement learning, encompassing
methods like Algorithm Distillation and Decision-Pretrained
Transformers .

Imitation Guarantee: Proving that supervised-pretrained
transformers imitate the conditional expectation of expert algorithms,
with generalization error scaling with model capacity and distribution
divergence .

Algorithm Approximation: Demonstrating that transformers with
ReLU attention can efficiently approximate near-optimal RL
algorithms (LinUCB, Thompson sampling, UCB-VI) .

Experimental Validation: Conducting preliminary experiments to
validate that transformers can perform ICRL, aligning with theoretical
findings .
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content
3.Transformers as decision makers: Provable in-context

reinforcement learning via supervised pretraining.

Theorem 6: Performance Gap in Expected Cumulative
Rewards

Conditions

Assumption A (Approximate Realizability) holds: Exists θ∗ ∈ Θ with
bounded error insert element 4 .

θ̂ is the solution to the supervised pretraining objective (maximizing
log-likelihood) .

R is the distribution ratio between expert and offline algorithms; NΘ

is the covering number .

Conclusion

With probability ≥ 1− δ, the difference in expected cumulative
rewards between Algθ̂ and the expert algorithm is bounded by terms
involving R, NΘ, and sample size .
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content
3.Transformers as decision makers: Provable in-context

reinforcement learning via supervised pretraining.

Theorem 8: Approximating Soft LinUCB

Context

Focus on stochastic linear bandits, where the soft LinUCB algorithm
is used for action selection .

Conclusion

For any small ε, there exists a transformer with specific architecture
(dimensions D ≤ O(dA), layers L = Õ(

√
T )) that approximates soft

LinUCB, with logarithmic probability error ≤ ε .

Relies on transformer’s ability to implement accelerated gradient
descent for ridge regression .
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content
3.Transformers as decision makers: Provable in-context

reinforcement learning via supervised pretraining.

Theorem 10 & 12: Key Approximations

Thompson Sampling (Informal): Transformers can approximate
Thompson sampling for linear bandits via matrix square root
computation (Pade decomposition), with high-probability error
bounds .

UCB-VI for Tabular MDPs: A transformer with L = 2H + 8 layers
can exactly implement soft UCB-VI, enabling near-optimal regret for
MDPs .
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content
3.Transformers as decision makers: Provable in-context

reinforcement learning via supervised pretraining.

Experimental Results

Setup

Using GPT-2 with ReLU attention; comparing against empirical
average, LinUCB/UCB, and Thompson sampling .

Two setups: Algorithm Distillation (LinUCB as both context and
expert) and DPT (optimal actions as expert) .

Findings

Linear bandits: Transformer performs comparably to LinUCB,
outperforming Thompson sampling .

Bernoulli bandits: Transformer aligns with Thompson sampling,
validating theoretical guarantees .
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content
4.Provable In-context Learning for Mixture of Linear Regressions

using Transformers

Main Work

Investigate transformers’ in-context learning (ICL) capabilities for
d-dimensional mixture of linear regression (MoR) models.

Demonstrate transformers can implement the EM algorithm internally
to solve MoR, with multi-step gradient ascent in M-steps.

Analyze generalization bounds and sample complexity for pretraining
transformers on MoR tasks.

Study training dynamics of single linear self-attention layers, showing
convergence to global optima with proper initialization.

Validate performance through simulations, comparing with EM
algorithm.
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4.Provable In-context Learning for Mixture of Linear Regressions

using Transformers

Key Theorems: Prediction and Estimation Bounds

Theorem 3.1 (General MoR Prediction)

Under high SNR (η ≥ CKρπ log(Kρπ)), the transformer’s prediction error
satisfies:

|ready (TF (H))−x⊤n+1β
OR | ≤ O

√log(d/δ)

√dKρ2π log
2(nK 2/δ)

n
+

√
dK log(K 2/δ)

nπmin


with probability 1− 9δ.
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4.Provable In-context Learning for Mixture of Linear Regressions

using Transformers

Key Theorems: Two-Component MoR Estimation

Theorem 3.2 (Parameter Estimation)

For K = 2 symmetric components, with n ≥ Cd log2(1/δ):

Low SNR (η ≤ C (d log2 n/n)1/4):

∥readβ(TF (H))− β∗∥2 ≤ O

((
d log2(n/δ)

n

)1/4
)

High SNR (η ≥ C (d log2 n/n)1/4):

∥readβ(TF (H))− β∗∥2 ≤ O

√d log2(n/δ)

n


with probability 1− δ.
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4.Provable In-context Learning for Mixture of Linear Regressions

using Transformers

Key Theorems: Excess Risk and Convergence

Theorem 3.3 (Excess Risk)

The excess risk of the transformer’s prediction is:

R =


O
(√

d log2 n
n

)
0 < η ≤ C

(
d log2(n/δ)

n

)1/4
O
(
d log2 n

n

)
η ≥ C

(
d log2(n/δ)

n

)1/4
Theorem 4.2 (Training Dynamics)
Single linear self-attention layers with proper initialization converge to
global optima of population loss via gradient flow.

Hang Yang Algorithm Simulators July 3, 2025 43 / 64



content
4.Provable In-context Learning for Mixture of Linear Regressions

using Transformers

Experimental Results: Prompt Length Impact

Figure: Enter Caption
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content 5.Transformers versus the EM Algorithm in Multi-class Clustering

Experimental Setup

Transformer: 3 layers, 2 heads, 64-dimensional embedding

Training: Adam optimizer (lr=0.0005, decay=0.995), 300 iterations

Data: Synthetic GMMs with isotropic covariance σ2I

Metrics: ARI (Adjusted Rand Index), NMI (Normalized Mutual
Information), Cross-Entropy Loss
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content 5.Transformers versus the EM Algorithm in Multi-class Clustering

Conclusion from Experiments

Transformers match theoretical minimax rates in clustering.

Strong performance even when theoretical assumptions are violated.

Viable alternative to Lloydâs algorithm for multi-class GMM
clustering.
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content 6.Learning spectral methods by transformers

Core Research Objectives

Explore the capabilities of Transformers in unsupervised learning, proving
they can learn spectral methods through pre-training, focusing on:

Principal Component Analysis (PCA)

Clustering of Gaussian Mixture Models (GMMs)

Learning paradigm: Acquire algorithms through extensive pre-training
instances, resembling human experiential learning, distinct from in-context
learning.
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content 6.Learning spectral methods by transformers

Key Contributions

1. Provide formal theoretical guarantees for Transformers in unsupervised
learning (PCA and GMM clustering) for the first time;
2. Establish connections between Transformers and iterative recovery
algorithms:

PCA task: Multi-layered Transformers can approximate the Power
Method

Clustering task: Design spectral algorithms approximable by
Transformers

;
3. Validate the unsupervised learning ability of pre-trained Transformers on
synthetic and real-world datasets.
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content 6.Learning spectral methods by transformers

PCA Task: Transformer Approximation of Power Method

Theorem 2.1 (Transformer Approximation of the Power Method)

: Given eigenvalues λ1 > λ2 > · · · > λk of covariance matrix XX⊤, there
exists a Transformer model:

Number of layers L = 2τ + 4k + 1, number of heads BM ≤ λd
1
C
ϵ2

Principal component estimation error:

∥v̂η+1 − vη+1∥2 ≤ Cτϵλ2
1 +

Cλ1
√
ϵ0

∆

k∏
i=1

5λi+1

∆

Error sources: Approximation error of Power Method iterations + error
from finite iterations.
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content 6.Learning spectral methods by transformers

GMM Clustering Task: Spectral Algorithm Approximation

Theorem 3.2 (GMM Clustering Guarantee)
:
For pre-trained Transformers in binary GMM clustering, the expected error
satisfies:

E[LGMM(TFθGMM
(H), z)] ≲

(
d log2N

N

) 1
3

+ B
2
7
d

µ d
2
7 n−

1
7 (logBµ)

1
7 (βB2

µ)
4
7

Error sources: Oracle error (from the algorithm itself) + pre-training error.
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PCA Task: Principal Component Prediction

Hang Yang Algorithm Simulators July 3, 2025 53 / 64



content 6.Learning spectral methods by transformers

Key Conclusions

1. Transformers outperform the traditional Power Method in unsupervised
learning;
2. ReLU-activated Transformers perform better than Softmax-based ones;
3. Theory and experiments are consistent, verifying Transformers’ ability
to learn spectral methods.
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conlusion

Transformers’ ability to approximate diverse algorithms has gained
significant attention.

Core contradiction: Balancing architectural flexibility with rigorous
theoretical guarantees for emulating specific algorithms.

Focus: Synthesis of 6 key studies on algorithm approximation
capabilities (ICL and beyond).
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Conclusion

In-Context Learning (ICL) Scenarios

1. Deep optimize

Approximates gradient descent for N-layer ReLU networks.

Constructs a (2N + 4)L-layer model to simulate L steps of gradient
descent.

Provides provable bounds on approximation error and convergence.
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In-Context Learning (ICL) Scenarios

2. decision makers

Focus: In-context reinforcement learning.

Supervised pretrained Transformers approximate near-optimal
algorithms (e.g., LinUCB, Thompson sampling).

Uses interaction trajectories as context; generalization error linked to
model capacity and distribution divergence.
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In-Context Learning (ICL) Scenarios

3. NeurIPS 2024 (Linear Regression)

Focus: In-context linear regression.

Proves Transformers achieve second-order convergence by
approximating efficient linear regression algorithms within context.
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In-Context Learning (ICL) Scenarios

4. Mixture of Linear Regressions

Leverages contextual inputs to approximate mixture of linear
regression algorithms.

Captures multiple linear components and emulates fitting via
in-context adaptation.
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Beyond ICL

1. spectral methods

Focus: Approximation of spectral methods in unsupervised learning.

Verifies (theoretically/empirically) that pretrained Transformers learn
PCA and Gaussian mixture clustering via iterative recovery
procedures.
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Beyond ICL

2. Transformers EM multi-class clustering

Connects Softmax attention layers to the EM algorithm for
multi-class clustering.

Provides approximation bounds for Expectation and Maximization
steps.

Shows Transformers achieve minimax optimal rates.
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Conclusion

Resolves the flexibility-guarantee contradiction.

Establishes Transformers as robust algorithm approximators across:
▶ Optimization, reinforcement learning, linear regression (including

mixtures).
▶ Spectral methods, clustering.

Supported by rigorous theory and empirical validation.
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Thank You!
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