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Background introdution

Garg et al. [Gar+22] showed transformer models trained on prompts
from a particular function class (e.g., linear models, neural networks, or
decision trees), they succeed at in-context learning, and the behavior of
the trained transformers can mimic those of familiar learning algorithms
like ordinary least squares.

the model is trained on prompts (x1, h(x1), . . . , xN , h(xN), xquery) where

xi , xquery
i .i .d∼ Dx and h ∈ H ∼ a distribution ∆. The transformer succeeds

at in-context learning when given a new prompt
(x ′1, h

′(x ′1), . . . , x ′N , h
′(x ′N), x ′query) where h′ may not belong to training

function class H. formulate a prediction for x ′query that is close to h′(x ′query)
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It leaves open the question of how it is that gradient-based
optimization algorithms over transformer architectures produce models
which are capable of in-context learning.

In this work, we investigate the learning dynamics of gradient flow in a
simplified transformer architecture when the training prompts consists of
random instances of linear regression datasets.
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Notation

We write [n] = 1, 2, ..., n. We use ⊗ to denote the Kronecker product,
and Vec the vectorization operator in column-wise order.

Examples

Vec(
1 2
3 4

) = (1, 2, 3, 4)T

We write the inner product of two matrices A,B ∈ Rm×n as

< A,B >= tr(ABT )

We use 0n and 0m×n to denote the zero vector and zero matrix of size n
and m × n
For a general matrix A, Ak: and A:k denote the k-th row and k-th column,
respectively. We denote the matrix operator norm and Frobenius norm as
∥ · ∥op and ∥ · ∥F .
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Notation

Remark

the m× n matrix A operator norm and Frobenius norm as ∥ · ∥op and ∥ · ∥F .

∥A∥op = sup
∥x∥≤1,x∈Rn

∥Ax∥

∥A∥F =
√
tr(AAT )

For a positive semi-definite matrix A, we write ∥x∥2A := xTAx
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framework for in-context learning of function classes

The goal for an in-context learner is to use the prompt to form a
prediction ŷ(xquery ) for the query such that ŷ(xquery ) ≈ h(xquery ).

Examples

one can view ordinary least squares as an ‘in-context learner’ for linear
models.

given (x1, y1(= wT x1 + ϵ1), x2, y2(= wT x2 + ϵ2), ..., xN , yN , xquery )

ordinary least squares gives an estimate ŵ of w ,and xquery ’s prediction
ŷ(xquery ) = ŵT xquery

We formalize the training loss and train objective in the following definition
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framework for in-context learning of function classes

Definition (Trained on in-context examples)

Let Dx be a distribution over an input space X , H ⊂ YX a set of
functions X → Y, and DH a distribution over functions in H. Let
S = {(x1, y1, . . . , xn, yn) : xi ∈ X , yi ∈ Y} be the set of finite-length
sequences of (x , y) pairs and let

FΘ = {fθ : S × X → Y, θ ∈ Θ}

be a class of functions parameterized by θ (model functions). For N > 0,
training Goal on the length N prompts:

θ∗ ∈ argminθ∈ΘEP=(x1,h(x1),...,xN ,h(xN),xquery) [ℓ (fθ(P), h(xquery))] , (3.1)

where xi , xquery
i.i.d.∼ Dx and h ∼ DH are independent.
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framework for in-context learning of function classes

Remark

[a learning algorithm from data:] Sample independent prompts by

sampling a random function h ∼ DH and feature vectors xi , xquery
i.i.d.∼ Dx ,

and then minimize the objective function appearing in (3.1) using
stochastic gradient descent or other stochastic optimization algorithms.

This procedure returns a model that is learned from in-context examples
and achieves some degree of generalization.

We quantifies how well such a model performs on in-context examples.
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In-context learning of a hypothesis class

Definition (In-context learning of a hypothesis class)

a model f : S × X → Y in-context learns a hypothesis class H on
(DH,Dx) up to error η ∈ R if there exists MDH,Dx (ε) such that for every
ε ∈ (0, 1), and for every prompt P of length M ≥ MDH,Dx (ε),

EP=(x1,h(x1),...,xM ,h(xM),xquery) [ℓ (f (P), h(xquery))] ≤ η + ε, (3.2)

where the expectation taken xi , xquery
i.i.d.∼ Dx and h ∼ DH.

The additive error term η may be noise.
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What would we do in this ppt

With these two definitions in hand, we can formulate the following
questions.

1 Can a model from FΘ that is trained on in-context examples of
functions in H w.r.t. (DH,Dx) in-context learn the hypothesis class
H w.r.t. (DH,Dx) with small prediction error?

2 Do standard gradient-based optimization algorithms suffice for
training the model from in-context examples?

3 How long must the contexts be during training and at test time to
achieve small prediction error?

In the remaining sections, we shall answer these questions.
for the case of f being one-layer transformers with linear self-attention
modules when the hypothesis class is linear models H
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Linear self-attention networks

we first recall the definition of the softmax-based single-head self-attention
module.

fAttn(E ;WK ,WQ ,W V ,W P) = E+W PW VE ·softmax

(
(WKE )⊤WQE

ρ

)
where ρ > 0 a normalization factor
In particular, we consider a single-layer linear self-attention (LSA) model,
yet it is still capable of in-context learning linear models

fLSA(E ; θ) = E + W PVE ·
(
E⊤WKQE

ρ

)
, θ = (W PV ,WKQ) (3.3)

Remark

It is noteworthy that recent empirical work shows that state-of-the-art
trained vision transformers with standard softmax-based attention modules
are such that (WK )TWQ and W PW V are nearly multiples of the identity
matrix [TK23], which can be represented under the parameterization we
consider.

Haojun Wu Trained Transformers Learn Linear Models In-Context USTC 2025 14 / 58



Linear self-attention networks

Embedding matrix E used in this work

E = E (P) =

(
x1 x2 · · · xN xquery
y1 y2 · · · yN 0

)
∈ R(d+1)×(N+1). (3.4)

The network’s prediction for the token xquery will be the bottom-right
entry of matrix output by fLSA, namely,

ŷquery = ŷquery(E ; θ) = [fLSA(E ; θ)](d+1),(N+1). (1)

with LSA model fLSA(E ; θ) = E + W PVE ·
(
E⊤WKQE

ρ

)
, θ = (W PV ,WKQ)

we can do training on it.
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LSA training

we only consider the task of in-context learning linear predictors.
Training prompts are sampled as follows. Let Λ be a positive definite
covariance matrix. Each training prompt, indexed by τ ∈ N, takes the
form of Pτ = (xτ,1, hτ (xτ,1), . . . , xτ,N , hτ (xτ,N), xτ,query), where task

weights wτ
i.i.d.∼ N (0, Id), inputs xτ,i , xτ,query

i.i.d.∼ N (0,Λ), and labels
hτ (x) = ⟨wτ , x⟩.
Each prompt’s embedding matrix Eτ :

Eτ :=

(
xτ,1 xτ,2 · · · xτ,N xτ,query

⟨wτ , xτ,1⟩ ⟨wτ , xτ,2⟩ · · · ⟨wτ , xτ,N⟩ 0

)
∈ R(d+1)×(N+1).

(2)
We denote the prediction of the LSA model on the query label in the task
τ as ŷτ,query = [fLSA(Eτ )](d+1),(N+1). The empirical risk over B
independent prompts is defined as

L̂(θ) =
1

2B

B∑
τ=1

(ŷτ,query − ⟨wτ , xτ,query⟩)2 . (3.7)
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LSA training

It is natural to consider taking large B of the training population loss.
when B → ∞, define:

L(θ) = lim
B→∞

L̂(θ) =
1

2
Ewτ ,xτ,1,...,xτ,N ,xτ,query

[
(ŷτ,query − ⟨wτ , xτ,query⟩)2

]
.

(3.8)

the expectation is taken over xτ,i , xquery
i.i.d.∼ N (0,Λ) and wτ ∼ N (0, Id).

Gradient flow captures the behavior of gradient descent with infinitesimal
step size and has dynamics given by the following differential equation:

dθ

dt
= −∇L(θ) (3.9)

Remark

In our main results, we conclude that the gradient flow when t → +∞ of
L(θ) led to the success of in-context learning the linear predictor of a wide
range of distribution.
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What would we do in this paper

With these definitions in mind, we come back to the problems we
mentioned above.

1 Can a model from FΘ that is trained on in-context examples of
functions in H w.r.t. (DH,Dx) in-context learn the hypothesis class
H w.r.t. (DH,Dx) with small prediction error?

2 Do standard gradient-based optimization algorithms suffice for
training the model from in-context examples?

3 How long must the contexts be during training and at test time to
achieve small prediction error?
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Theorem 4.1 (L(θ)’s Convergence and limits).

define

Γ :=

(
1 +

1

N

)
Λ +

1

N
tr(Λ)Id ∈ Rd×d .

Suppose the initialization satisfies Assumption below with initialization
scale σ > 0 satisfying σ2∥Γ∥op

√
d < 2, the gradient flow of linear

self-attention network f ∗LSA(prove PL inequality holds) converges
(exponentially about t) to a global minimum of the population loss L(θ).
Moreover, W PV and WKQ converge respectively to

WKQ
∗ =

[
tr
(
Γ−2
)]− 1

4

(
Γ−1 0d
0⊤d 0

)
, W PV

∗ =
[
tr
(
Γ−2
)] 1

4

(
0d×d 0d
0⊤d 1

)
.

Assumption (Initialization). Let σ > 0 be a parameter, Θ ∈ Rd×d be
any matrix satisfying ∥ΘΘ⊤∥F = 1 and ΘΛ ̸= 0d×d . We assume

W PV (0) = σ

(
0d×d 0d
0⊤d 1

)
, WKQ(0) = σ

(
ΘΘ⊤ 0d

0⊤d 0

)
. (3.10)
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Trained transformer indeed in-context learn linear predictor

At the global optimum f ∗LSA, input a test prompt

P = (x1, y1, . . . , xM , yM , xquery, yquery), where (xi , yi ), (xquery, yquery)
i.i.d.∼ D

with marginal distribution xi , xquery ∼ Dx = N (0,Λ).

The f ∗LSA prediction ŷquery = [f ∗LSA(EP ; (W PV
∗ ,WKQ

∗ ))](d+1),(M+1) is

(
0⊤d 1

)( 1
M

∑M
i=1 xix

⊤
i + 1

M xqueryx
⊤
query

1
M

∑M
i=1 xiyi

1
M

∑M
i=1 x

⊤
i yi

1
M

∑M
i=1 y

2
i

)(
Γ−1 0d
0⊤d 0

)(
xquery

0

)

= x⊤queryΓ−1
(

1
M

∑M
i=1 yixi

)
.(3)

When the length N of training prompts is large, we have Γ−1 ≈ Λ−1, and
when M → +∞ implies

ŷquery ≈ x⊤queryΛ−1E(x ,y)∼D[yx ] = x⊤query
(
argminw∈RdE(x ,y)∼D

[
(y − ⟨w , x⟩)2

])
.

for sufficiently large N, the trained transformer indeed in-context learns
the class of linear predictors.
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Remark
1 f ∗LSA can be trained to approximate by training data (takes the form

of Pτ = (xτ,1, hτ (xτ,1), . . . , xτ,N , hτ (xτ,N), xτ,query), where task weights

wτ
i.i.d.∼ N (0, Id), inputs xτ,i , xτ,query

i.i.d.∼ N (0,Λ), and labels
hτ (x) = ⟨wτ , x⟩.)
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Remark

From demonstration
ŷquery = x⊤queryΓ−1

(
1
M

∑M
i=1 yixi

)
≈ x⊤queryΛ−1E(x ,y)∼D[yx ] above, we can

know that it still holds for query shifts but covariate shifts not:
Query shifts. Consider yi = ⟨w , xi ⟩, we have

ŷquery ≈ x⊤queryΛ−1

(
1

M

M∑
i=1

xix
⊤
i

)
w . (4)

From this we see that whether query shifts can be tolerated hinges upon
the distribution of the xi ’s. Since Dtrain

x = Dtest
x , if M is large then

ŷquery ≈ x⊤queryΛ−1Λw = x⊤queryw . (4.8)

Thus, very general shifts in the query distribution can be tolerated.
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Remark

Covariate shifts. In contrast to query shifts, covariate shifts cannot be
fully tolerated. When Dtrain

x ̸= Dtest
x , then the approximation in (4.8) does

not hold as 1
M

∑M
i=1 xix

⊤
i will not cancel Γ−1 when M and N are large.

For instance, if we consider test prompts where the covariates are scaled
by a constant c ̸= 1, then

ŷquery ≈ x⊤queryΛ−1

(
1

M

M∑
i=1

xix
⊤
i

)
≈ x⊤queryΛ−1c2Λw = c2x⊤queryw ̸= x⊤queryw .

(5)

This failure mode of the trained transformer with linear self-attention was
also observed in the trained transformer architectures by Garg et
al.[Gar+22]
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Behavior of trained transformer under distribution shifts

Figure: In-context learning on out-of-distribution prompts. Garg use isotropic
Gaussian while training on standard GPT-2 model using adam optimize. (a) test
prompt inputs from a non-isotropic Gaussian (failure), (b) adding label noise to
in-context examples, (c) restricting in-context examples to a single (random)
orthant.

In all cases, the model error degrades gracefully and remains close to that
of the least squares estimator, indicating that its in-context learning ability
extrapolates beyond the training distribution.
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Thinking

It may seem surprising that a transformer trained on linear regression
tasks fails in settings where ordinary least squares performs well.

In the following theorem 4.2, we characterize f ∗LSA’s prediction error in
theorem 4.1.
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Theorem 4.2. transformers in-context learn the best linear predictor

Let D be a distribution over (x , y) ∈ Rd × R, whose marginal distribution
on x is Dx = N (0,Λ). Assume ED[y ], ED[xy ], ED[y2xx⊤] exist and are
finite. If we define a := Λ−1E(x ,y)∼D[xy ], Γ := Λ + 1

N Λ + 1
N tr(Λ)Id , and

Σ := E(x ,y)∼D

[
(xy − E(xy)) (xy − E(xy))⊤

]
.

f ∗LSA be the LSA model in above theorem. Assume the test prompt is of the

form P = (x1, y1, . . . , xM , yM , xquery), where (xi , yi ), (xquery, yquery)
i.i.d.∼ D.

and ŷquery = [f ∗LSA(EP ; (W PV
∗ ,WKQ

∗ ))](d+1),(M+1) is the trained LSA
model prediction for xquery given the prompt. we have:

E (ŷquery − yquery)2 = min
w∈Rd

E (⟨w , xquery⟩ − yquery)2︸ ︷︷ ︸
Error of best linear predictor

+ tr
[
ΣΓ−2Λ

]
+ 1

N2

[
∥a∥2Γ−2Λ3 + 2 tr(Λ)∥a∥2Γ−2Λ2 + tr(Λ)2∥a∥2Γ−2Λ

]
,

where the expectation is over (xi , yi ), (xquery, yquery)
i.i.d.∼ D.
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a variant of training on in-context examples

We now consider the distribution Dx is sampled randomly from a
distribution ∆.

θ∗ ∈ argminθ∈ΘEP=(x1,h(x1),...,xN ,h(xN),xquery) [ℓ (fθ(P), h(xquery))] , (4.9)

where Dx ∼ ∆, xi , xquery
i.i.d.∼ Dx and h ∼ DH.

The population loss now includes an expectation over the distribution of
the covariance matrices Λτ (random matrices):

L(θ) =
1

2
Ewτ ,Λτ ,xτ,1,...,xτ,N ,xτ,query

[
(ŷτ,query − ⟨wτ , xτ,query⟩)2

]
. (4.10)

the previous definition of training on in-context examples by taking
supp(∆) = {Λ}. Similarly to Theorem 4.1, we have
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Theorem 4.5 (Global convergence in random covariance case).
Consider gradient flow over the general population loss (4.10), where Λτ

are diagonal (convenient for analysis) with independent diagonal entries
(random variables) which are strictly positive a.s. and have finite third
moments. Suppose the initialization satisfies Assumption, ∥EΛτΘ∥F ̸= 0,
with initialization scale σ > 0 satisfying

σ2 <
2∥EΛτΘ∥2F√

d
[
E∥Γτ∥op∥Λτ∥2F

] . (4.11)

Then gradient flow converges to a global minimum of the population loss.
Moreover, W PV and WKQ converge to W PV

∗ and WKQ
∗ , where

WKQ
∗ =

∥∥∥[EΓτΛ2
τ

]−1 E
[
Λ2
τ

]∥∥∥− 1
2

F
·
([

EΓτΛ2
τ

]−1 [EΛ2
τ

]
0d

0⊤d 0

)
,

W PV
∗ =

∥∥∥[EΓτΛ2
τ

]−1 E
[
Λ2
τ

]∥∥∥ 1
2

F
·
(

0d×d 0d
0⊤d 1

)
,

(4.12)

where Γτ = N+1
N Λτ + 1

N tr(Λτ )Id and the expectations above are over the
distribution of Λτ .
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From this result, we can see why the trained transformer fails in the
random covariance case.

Suppose we have a test prompt corresponding to a weight matrix

w ∈ Rd and covariance matrix Λnew, and set Λτ
d≡ Λnew ,

xi , xquery
i.i.d.∼ N (0,Λnew), yi = ⟨w , xi ⟩, i ∈ [M] and yquery = ⟨w , xquery⟩. At

convergence, the prediction ŷquery by the trained transformer on the new
task will be

(
0⊤d 1

)( 1
M

∑M
i=1 xix

⊤
i + 1

M xqueryx
⊤
query

1
M

∑M
i=1 xiyi

1
M

∑M
i=1 x

⊤
i yi

1
M

∑M
i=1 y

2
i

)([
EΓτΛ2

τ

]−1 [EΛ2
τ

]
0d

0⊤d 0

)(
xquery

0

)

= x⊤query ·
[
EΛ2

τ

] [
EΓτΛ2

τ

]−1 ·
[

1
M

∑M
i=1 xix

⊤
i

]
w

→ x⊤query ·
[
EΛ2

τ

] [
EΓτΛ2

τ

]−1 · Λneww almost surely when M → ∞.(6)
When M,N → ∞ so that Γτ → Λτ . taking expectation over Λnew:

E [ŷquery | xquery,w ] → x⊤query ·
[
EΛ2

τ

] [
EΛ3

τ

]−1 · [EΛτ ]w . (7)
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trained on random covariate distributions

If we consider the case λτ,i
i.i.d.∼ Exponential(1), so that E[Λτ ] = Id ,

E[Λ2
τ ] = 2Id , and E[Λ3

τ ] = 6Id , we get

Eŷquery →
1

3
⟨w , xquery⟩. (8)

This shows that training on in-context examples with random covariate
distributions does not allow for in-context learning of a hypothesis class
with varying covariate distributions.
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the behavior of more complex transformer architectures

Experiments with large, nonlinear transformers. GPT-2: a large,
nonlinear transformer

trained on in-context examples of linear models, both in the
fixed-covariance case and in the random-covariance case.

training prompts sample from random independent covariance matrices:

Λτ = diag(λτ,1, ..., λτ,d), where λτ,i
i .i .d∼ exp(1) or fixed matrices: the

covariance matrix is fixed to the identity matrix.
test prompts sample from random covariance matrices:

cΛ = diag(cλ1, ..., cλd), where λi
i .i .d∼ exp(1), and c > 0 is a scaling factor

or fixed matrices: the covariance matrix is fixed to the identity matrix.
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Figure: take N=40,70,100 when train and test six of them(fixed and random
matrices case 2 × 3 = 6) for each small figure corresponding to four test include
fixed matrices test prompts and random matrices with scaling factors c=1,4,9
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The black dash line is LSA limit.
It is noteworthy that train and test c=1 on random matrices, GPT-2
performs well while we analyze failure in LSA model (linear architecture).
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When the test prompt length M exceeds the training prompt length N:
there is an evident spike in prediction error, regardless of fixed or random
covariance case, and the spike appears to decrease when evaluated on
prompts with higher variance.

Figure: take N=40,70,100 when train and test six of them(fixed and random
matrices case 2 × 3 = 6) for each small figure corresponding to four test include
fixed matrices test prompts and random matrices with scaling factors c=1,4,9
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Explanation: The positional encodings are randomly initialized and are
learnable parameters but the encoding for position i is only updated if the
transformer encounters a prompt which has a context of length i. Thus,
when evaluating on prompts of length M > N, the model is relying upon
random positional encodings for M − N samples.

A concurrent work found that removing positional encoders improves
performance when evaluating on larger contexts [APG23].
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Sketch of proof

1 recognize that the prediction ŷquery(Eτ ; θ) can be written as the
output of a quadratic function u⊤Hτu for a matrix Hτ depending on
the token embedding matrix Eτ and for the vector u depending on
θ = (WKQ ,W PV ).

2 We then see that the dynamics are governed by a complex system of
d2 + 1 coupled differential equations.

3 the set of global minima for the d2 + 1 coupled differential equations
satisfies the condition u−1U11 = Γ−1. And get Minimum of Loss
Function:

ℓ̃ (U11, u−1)− min
U11∈Rd×d ,u−1∈R

ℓ̃ (U11, u−1) =
1

2

∥∥∥Γ
1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)∥∥∥2
F
.

4 Finally, we show that although the optimization problem is
non-convex, a Polyak- Lojasiewicz (PL) inequality holds, which implies
that gradient flow converges to a global minimum.
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Preparation

By simple calculation, actually only part of W PV and WKQ affect the
prediction ŷ :
denote W PV ∈ R(d+1)×(d+1) and WKQ ∈ R(d+1)×(d+1)

W PV =

(
W PV

11 wPV
12

(wPV
21 )⊤ wPV

22

)
, WKQ =

(
WKQ

11 wKQ
12

(wKQ
21 )⊤ wKQ

22

)
, (3.5)

where W PV
11 ∈ Rd×d ; wPV

12 ,wPV
21 ∈ Rd ; wPV

22 ∈ R; and WKQ
11 ∈ Rd×d ;

wKQ
12 ,wKQ

21 ∈ Rd ; wKQ
22 ∈ R.

Then, the prediction ŷquery is

ŷquery =
(
(wPV

21 )⊤ wPV
22

)
·
(
EE⊤

N

)(
WKQ

11

(wKQ
21 )⊤

)
xquery, (3.6)

we can set all other entries zero.
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Step1: Lemma 5.1.

Eτ :=

(
xτ,1 xτ,2 · · · xτ,N xτ,query

⟨wτ , xτ,1⟩ ⟨wτ , xτ,2⟩ · · · ⟨wτ , xτ,N⟩ 0

)
∈ R(d+1)×(N+1).

(9)
. Then the prediction ŷquery(Eτ ; θ) for the query covariate can be written
as the output of a quadratic function,ŷquery(Eτ ; θ) = u⊤Hτu, where the
matrix Hτ is defined as,

Hτ =
1

2
Xτ ⊗

(
EτE

⊤
τ

N

)
∈ R(d+1)2×(d+1)2 , Xτ =

(
0d×d xτ,query

(xτ,query)⊤ 0

)
(5.1)

u = Vec(U) ∈ R(d+1)2 , U =

(
U11 u12

(u21)⊤ u−1

)
∈ R(d+1)×(d+1),

where U11 = WKQ
11 ∈ Rd×d , u12 = wPV

21 ∈ Rd×1, u21 = wKQ
21 ∈ Rd×1,

u−1 = wPV
22 ∈ R correspond to particular components of W PV and WKQ

This implies that we can write the original loss function (3.7) as

L̂ =
1

2B

B∑
τ=1

(
u⊤Hτu − w⊤

τ xτ,query
)2

.
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Basic knowledge used in proof

Lemma D.1 (Matrix Derivatives, Kronecker Product and
Vectorization, [PP+08]). We denote A, B, X as matrices and x as
vectors. Then, we have

∂x⊤Bx

∂x
= (B + B⊤)x.

Vec(AXB) = (B⊤ ⊗ A) Vec(X ).

tr(A⊤B) = Vec(A)⊤ Vec(B).

∂

∂X
tr(XBX⊤) = XB⊤ + XB.

∂

∂X
tr(AX⊤) = A.

∂

∂X
tr(AXBX⊤C ) = A⊤C⊤XB⊤ + CAXB.
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proof of Lemma 5.1.

Step1: Lemma 5.1.

Eτ :=

(
xτ,1 xτ,2 · · · xτ,N xτ,query

⟨wτ , xτ,1⟩ ⟨wτ , xτ,2⟩ · · · ⟨wτ , xτ,N⟩ 0

)
∈ R(d+1)×(N+1).

(10)
. Then the prediction ŷquery(Eτ ; θ) for the query covariate can be written
as the output of a quadratic function,ŷquery(Eτ ; θ) = u⊤Hτu, where the
matrix Hτ is defined as,

Hτ =
1

2
Xτ ⊗

(
EτE

⊤
τ

N

)
∈ R(d+1)2×(d+1)2 , Xτ =

(
0d×d xτ,query

(xτ,query)⊤ 0

)
(5.1)

u = Vec(U) ∈ R(d+1)2 , U =

(
U11 u12

(u21)⊤ u−1

)
∈ R(d+1)×(d+1),

where U11 = WKQ
11 ∈ Rd×d , u12 = wPV

21 ∈ Rd×1, u21 = wKQ
21 ∈ Rd×1,

u−1 = wPV
22 ∈ R correspond to particular components of W PV and WKQ
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quadratic function is non-convex

Remark

Prove the matrix

Hτ =
1

2
Xτ ⊗

(
EτE

⊤
τ

N

)
has at least d + 1 negative eigenvalues
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Step 2: Lemma 5.2. Let u = Vec(U) := Vec

((
U11 u12

(u21)⊤ u−1

))
as in

Lemma 5.1. Consider gradient flow over L := 1
2E
(
u⊤Hτu − w⊤

τ xτ,query
)2

the expectation is taken over xτ,i , xquery
i.i.d.∼ N (0,Λ) and wτ ∼ N (0, Id).

with respect to u starting from an initial value satisfying Assumption.
Then the dynamics of U follows

d

dt
U11(t) = −u2−1ΓΛU11Λ + u−1Λ2

d

dt
u−1(t) = − tr

[
u−1ΓΛU11Λ(U11)⊤ − Λ2(U11)⊤

]
,

(5.4)

and u12(t) = 0d , u21(t) = 0d for all t ≥ 0, where
Γ =

(
1 + 1

N

)
Λ + 1

N tr(Λ)Id ∈ Rd×d .
So the dynamics are governed by a complex system of d2 + 1 coupled
differential equations. We can shows that these dynamics are the same as
those of gradient flow on the following objective function:

ℓ̃ : Rd×d×R → R, ℓ̃(U11, u−1) = tr

[
1

2
u2−1ΓΛU11Λ(U11)⊤ − u−1Λ2(U11)⊤

]
.
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proof of Lemma 5.2.

We will use the following lemma in proof Lemma D.2. (Isserlis’
Theorem) If X is Gaussian random vector of d dimension, mean zero and
covariance matrix Λ, and A ∈ Rd×d is a fixed matrix. Then

E
[
XX⊤AXX⊤

]
= Λ

(
A + A⊤

)
Λ + tr(AΛ)Λ. (11)

1 Calculate the Second Term

2 Calculate the First Term

3 u12 and u21 Vanish

4 Dynamics of U11

5 Dynamics of u−1
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Corollary A.2 (Minimum of Loss Function). The loss function ℓ̃ in
Lemma A.1 satisfies

min
U11∈Rd×d ,u−1∈R

ℓ̃(U11, u−1) = −1

2
tr
[
Λ2Γ−1

]
(12)

and

ℓ̃(U11, u−1)− min
U11∈Rd×d ,u−1∈R

ℓ̃(U11, u−1) =
1

2

∥∥∥Γ
1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)∥∥∥2
F
.

(13)
Equality holds when

U11 = cΓ−1, u−1 = c−1
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proof of Corollary A.2

Lemma D.4 ([MR99]). For any two positive semi-definite matrices
A,B ∈ Rd×d , we have

tr[AB] ≥ 0.

AB ⪰ 0 if and only if A and B commute.
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We now show that PL inequality holds, which implies that gradient flow
converges to a global minimum:
Lemma 5.4. Suppose the initialization of gradient flow satisfies
Assumption with initialization scale satisfying σ2 < 2√

d∥Γ∥op
, define:

µ :=
σ2

√
d∥Λ∥2op tr(Γ−1Λ−1) tr(Λ−1)

∥ΛΘ∥2F
[
2 −

√
dσ2∥Γ∥op

]
> 0, (5.7)

gradient flow on ℓ̃ with respect to U11 and u−1 satisfies, for any t ≥ 0,

∥∥∥∇ℓ̃(U11(t), u−1(t))
∥∥∥2
2

:=

∥∥∥∥∥ ∂ℓ̃

∂U11

∥∥∥∥∥
2

F

+

∣∣∣∣∣ ∂ℓ̃

∂u−1

∣∣∣∣∣
2

≥ µ

(
ℓ̃(U11(t), u−1(t)) − min

U11∈Rd×d ,u−1∈R
ℓ̃(U11, u−1)

)
.

(5.8)
Moreover, gradient flow converges to the global minimum of ℓ̃, and we
find U11 and u−1 exactly converge to the following,

limt→∞ u−1(t) = ∥Γ−1∥
1
2
F and limt→∞ U11(t) = ∥Γ−1∥−

1
2

F Γ−1.
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We will use the following lemma in proof:
Lemma D.3 (Von-Neumann’s Trace Inequality). Let U,V ∈ Rd×n

with d ≤ n. We have

tr
(
U⊤V

)
≤

d∑
i=1

σi (U)σi (V ) ≤ ∥U∥op ×
d∑

i=1

σi (V ) ≤
√
d · ∥U∥op∥V ∥F ,

(14)
where σ1(X ) ≥ σ2(X ) ≥ · · · ≥ σd(X ) are the ordered singular values of
X ∈ Rd×n.
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proof of Lemma 5.4.

lemma A.3 says the parameters in the LSA model will keep ’balanced’ in
the whole trajectory. From the proof of this lemma, we can understand
why we assume a balanced parameter Assumption at the initial time.
Lemma A.3 (Balanced Parameters). Consider gradient flow over
L(= ℓ̃ + C ) in with respect to u starting from an initial value satisfying
Assumption . For any t ≥ 0, it holds that

u2−1 = tr
[
U11(U11)⊤

]
. (A.12)
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proof of Lemma 5.4.

We prove A.4 for the following Lemma A.5
Lemma A.4. Consider gradient flow over L(= ℓ̃ + C ) with respect to u
starting from an initial value satisfying Assumption. If the initial scale
satisfies

0 < σ <

√
2√

d∥Γ∥op
, (A.13)

then, for any t ≥ 0, it holds that

u−1 > 0. (15)
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proof of Lemma 5.4.

Lemma A.5. Consider gradient flow over L in with respect to u starting
from an initial value satisfying Assumption with initial scale

0 < σ <
√

2√
d∥Γ∥op

. For any t ≥ 0, it holds that

u−1 ≥
√

σ2

2
√
d∥Λ∥2op

∥ΛΘ∥2F
[
2 −

√
dσ2∥Γ∥op

]
> 0. (A.14)
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Finally, let’s prove the PL inequality and further, the global convergence of
gradent flow on the loss function ℓ̃
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Theorem 4.2

Theorem 4.2. Let D be a distribution over (x , y) ∈ Rd × R, whose
marginal distribution on x is Dx = N (0,Λ). Assume ED[y ], ED[xy ],
ED[y2xx⊤] exist and are finite. If we define
a := Λ−1E(x ,y)∼D[xy ], Γ := Λ + 1

N Λ + 1
N tr(Λ)Id , and

Σ := E(x ,y)∼D

[
(xy − E(xy)) (xy − E(xy))⊤

]
.

f ∗LSA be the LSA model in above theorem. Assume the test prompt is of the

form P = (x1, y1, . . . , xM , yM , xquery), where (xi , yi ), (xquery, yquery)
i.i.d.∼ D.

and ŷquery = [f ∗LSA(EP ; (W PV
∗ ,WKQ

∗ ))](d+1),(M+1) is the trained LSA
model prediction for xquery given the prompt. we have:

E (ŷquery − yquery)2 = min
w∈Rd

E (⟨w , xquery⟩ − yquery)2︸ ︷︷ ︸
Error of best linear predictor

+ tr
[
ΣΓ−2Λ

]
+ 1

N2

[
∥a∥2Γ−2Λ3 + 2 tr(Λ)∥a∥2Γ−2Λ2 + tr(Λ)2∥a∥2Γ−2Λ

]
,

where the expectation is over (xi , yi ), (xquery, yquery)
i.i.d.∼ D.
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proof of Theorem 4.2.

Theorem 4.2. Let D be a distribution over (x , y) ∈ Rd × R, whose
marginal distribution on x is Dx = N (0,Λ). Assume ED[y ], ED[xy ],
ED[y2xx⊤] exist and are finite. If we define
a := Λ−1E(x ,y)∼D[xy ], Γ := Λ + 1

N Λ + 1
N tr(Λ)Id , and

Σ := E(x ,y)∼D

[
(xy − E(xy)) (xy − E(xy))⊤

]
.

f ∗LSA be the LSA model in above theorem. Assume the test prompt is of the

form P = (x1, y1, . . . , xM , yM , xquery), where (xi , yi ), (xquery, yquery)
i.i.d.∼ D.

and ŷquery = [f ∗LSA(EP ; (W PV
∗ ,WKQ

∗ ))](d+1),(M+1) is the trained LSA
model prediction for xquery given the prompt. we have:

E (ŷquery − yquery)2 = min
w∈Rd

E (⟨w , xquery⟩ − yquery)2︸ ︷︷ ︸
Error of best linear predictor

+ tr
[
ΣΓ−2Λ

]
+ 1

N2

[
∥a∥2Γ−2Λ3 + 2 tr(Λ)∥a∥2Γ−2Λ2 + tr(Λ)2∥a∥2Γ−2Λ

]
,

where the expectation is over (xi , yi ), (xquery, yquery)
i.i.d.∼ D.
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Summary

In this work, we investigated the dynamics of in-context learning of
transformers with a single linear self attention layer under gradient flow on
the population loss.
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Summary

There are a number of natural directions for future research.

1 similar results would hold for stochastic gradient descent with finite
step sizes?

2 similar results would hold for more general initializations.

3 understanding the dynamics of in-context learning in nonlinear and
deep transformers.1

4 covariate shifts the framework restricted to the fixed marginal
distribution over the covariates (Dx) but other learning algorithms
(such as ordinary least squares) are able to achieve small prediction
error for prompts for very general classes of distributions2

5 removing positional encoders in GPT-2 improves performance

1.we refer to Huang et al. [2023](In-context convergence of transformers.),
Chen et al. [2024](Training dynamics of multi-head softmax attention...)
for linear regression prediction.
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