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Overview

© Transformers
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Large Language Models (LLMs)

e LLMs are autoregressive probabilistic models defined over
sequences of tokens.

@ Input: A sequence prefix (z1,22,...,2¢—1).
@ Output: A probability distribution over the vocabulary for the next
token ;.

@ Core mechanism: The model predicts one token at a time,
conditioning on all previous tokens as context.
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Decoder-only Transformer

o Let the input sequence be [wy,ws, ..., wy,], where each token wj is
mapped to an embedding vector h; € R%.
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Decoder-only Transformer

o Let the input sequence be [wy,ws, ..., wy,], where each token wj is
mapped to an embedding vector h; € R%.
@ The sequence is represented as a matrix:

H = [hi;ha; ... hy] € R™

where H is the input to the first decoder layer.
@ Add positional encodings:

H=H+P

where P € R™*4 s the positional encoding matrix.
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Decoder-only Transformer

Let the input sequence be [wy,ws,...,wy], where each token w; is
mapped to an embedding vector h; € R%.
The sequence is represented as a matrix:

H = [hi;ha; ... hy] € R™

where H is the input to the first decoder layer.
Add positional encodings:

H=H+P

where P € R™*4 s the positional encoding matrix.
Each decoder layer applies masked self-attention and feed-forward
networks to generate contextualized representations:

H — Attention; — FFN; — --- — Attention, — FFN[
The output at each position i is used to predict the next token w;1:
Ui = Softmax(Whl(L) +b)
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Attention Layer

Definition 1
(Self-Attention layer with Softmax). A multi-head self-attention layer
with M heads is denoted as Attng(-), where

0= {(QmaKmv Vm) = RDXD}r]\r/LIZI

Given input H = [hy,..., hy] € RPN the layer outputs:

M
Attng(H) = H + Y V;,, H - Softmax ((QmH)T(KmH)) :
m=1

where Softmax is applied column-wise (across keys for each query).
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For each token h; € R, the updated representation is:

M N
ili = h; + Z Zaz(]m) . thj,

m=1 j=1

where the attention weights agn) are computed by
(m) _ eXp((thi7 Kmhj>)

M TSN op (@il Kmhi)

@ Q. h;: query — what token i wants to know

o K,,h;: key — what token j is about

e V,,h;: value — information token j provides
Yihong Zuo
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Transformer: Pros and Cons

Advantages
Captures long-range dependencies via self-attention
Highly parallelizable (unlike RNNs)

Scales efficiently with data and compute

Achieves strong empirical performance on a wide range of tasks (NLP,
vision, etc.)
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Transformer: Pros and Cons

Advantages
Captures long-range dependencies via self-attention
Highly parallelizable (unlike RNNs)

Scales efficiently with data and compute

Achieves strong empirical performance on a wide range of tasks (NLP,
vision, etc.)

Limitations
@ Quadratic time and memory complexity in sequence length

@ Each new token requires re-evaluating the full Transformer over all
previous tokens

Solutions: Key-Value (KV) cache, Speculative Sampling
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Overview

© In-context Learning
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The In-Context Learning (ICL) Capability

- ’i! Apple -> Fruit. Sofa -> Furniture. Bird ->?

@ Animal.

Figure: Enter Caption
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The In-Context Learning (ICL) Capability

- 75! Apple -> Fruit. Sofa -> Furniture. Bird ->?

®

Figure: Enter Caption

@ A Transformer is meta-trained on diverse tasks.

@ At inference, given a prompt with a few input-output pairs (x;, y;),
and a new input zy41, the model predicts yn 1.

@ No explicit parameter update—learning happens “in context”!
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Mathematical Definition of In-context Learning

In-context learning capability
Let {(x;,y:)}! ~ P, with P unknown to the model.
Form the context input H = [z1,y1,%2,Y2, .-, TN, YN, TN+1]-
Output a good estimate g1 = TF;(H) ~ yni1.
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Formulating the Problem

For a loss function ¢(-,), our goal is to minimize the population risk:

7—\’,(9) = E{(a;i,yi)}NIP’ [E(TFG(H)v yN-‘rl)] .

Given n samples H) = [z ) . :L‘gvﬂ] and yNzrl, we perform
empirical risk minimization (ERM)
YR - 0)
min R(0) = ~ ;aTF@(Hw) YN+
]:
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Formulating the Problem

For a loss function ¢(-,), our goal is to minimize the population risk:

7—\’,(9) = E{(wi,yi)}wﬁ” [E(TFG(H)v yN-I—l)] .

Given n samples H) = [z ) . CL‘SV_H] and yNzrl, we perform
empirical risk minimization (ERM).
s ¢ 0 )
min R(0) = ~ ;aTF@(Hw) YN+
]:

This leads to a random, non-convex optimization problem, typically solved
via stochastic gradient descent (SGD). Suppose SGD returns an
approximate solution:

) ? < inf R A
0 e {H‘R((g) < 612@7?/(9) + opt}

Our goal: to upper bound the population risk R(é)
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Risk Decomposition

R(0) = R(0) — R(0) + R(0)

< R inf R
< sup <R(0) R(G)) + inf R(0) + Aopt
< 2sup [R(9) —72(9)‘ + mERO) Ao
9O ) g’
— optimization error
generalization error approximation error
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Risk Decomposition

R(0) = R(0) — 7@(9) R(0)

< sup < ) 1nf 73 )+ Aopt
0cO
< 2sup |R(#) — R(# )‘ mf 73(0) + Aopt
0e© ~—
R optimization error
generalization error approximation error

o Generalization error: Often bounded using the chaining method or
covering arguments.
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Risk Decomposition

R(0) = R(0) — 7@(9) R(0)

< sup < ) mf 73 )+ Aopt
6co
< 2sup |R(#) — R(# )‘ mf 73(0) + Aopt
0e© ~—
R optimization error
generalization error approximation error

o Generalization error: Often bounded using the chaining method or
covering arguments.

@ Approximation error: Case-dependent; typically bounded by
explicitly constructing a suitable 6.
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Risk Decomposition

R(0) = R(0) — 7@(9) R(0)

< sup < ) mf 73 )+ Aopt
0cO
< 2sup |R(#) — R(# )‘ mf 73(0) + Aopt
IS ~—~
R optimization error
generalization error approximation error

o Generalization error: Often bounded using the chaining method or
covering arguments.

@ Approximation error: Case-dependent; typically bounded by
explicitly constructing a suitable 6.

e Optimization error: Hard to analyze, especially for deep networks.
Most works assume it is negligible or zero; we make the same
assumption here. For shallow (1-2 layer) networks, some results are
known, but we defer their discussion.
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Overview

© Transformers can learn linear regression in context
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In the following, we use a simplified Transformer to simplify the theoretical
analysis.

Definition 2

(Attention layer). A (self-)attention layer with M heads is denoted as
Attng(-) with parameters 6 = {(V, Qm, Km) ey € RP*P. On any
input sequence H € RPXV,

H = Attng(H) := H + % % (VH -0 ((QuH) (K, H))) € RP*Y,

m=1
where o : R — R is the ReLU function. In vector form,

M N
= 1
B = [Attua (DL =i + 3 5 350 (Qmbs Kinhy) - Vi
j:

m=1
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MLP Layer

Definition 3

(MLP layer). A (token-wise) MLP layer with hidden dimension D' is
denoted as

MLPg(-) with parameters 8 = (W1, W) € RP'*P x RP*D",

On any input sequence H € RP*N,

H = MLPg(H) := H + Wy (W H),

where o : R — R is the ReLU function. In vector form, we have

}Nli =h; + WgO’(Wlhi).
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Transformer

Definition 4

(Transformer). An L-layer transformer, denoted as TFg(-), is a
composition of L self-attention layers each followed by an MLP layer:

H") = TFo(H©®), where H® ¢ RP*V
is the input sequence, and

H® = MLP,, (Attn 50

mlp attn

(H“—l))) , (efl,...,L}.

Above, the parameter 6 = (612, 08{; )) consists of the attention layers

0 = (V. QY K%))}me[M] C RP*D and the MLP layers

ol — (Wi WIO) ¢ RPXD x RD'<D.
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Norm of Parameters

We additionally define the following norm of a transformer TFg:
161lop :=

v \
O KO, vy, OIS o)
gé?ﬁ{ng;?ﬁ]{uqm lops K21 "}+m§:1” Wl + W lop W2y

We can prove that Transformer is Lipschitz continous to this norm when
inputs are bounded.
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Transformers

Input:
X1 Xo - XN XN+1 0D—(d+3)
H=1y v - un 0 € RDX(NH), p; = 1 €
P1 P2 -+ PN DPN+1 1{i < N+1}
We assume

Ixill2 < Ba, lyil < By, a.s.
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Transformers

Input:
X1 X3
H=|y1 vy
P1 P2
We assume
Output:

XN XN+l Op—(a+3)
YN 0 | eRPXNFD b= 1 €
PN PN+1 1{i < N+1}

Ixill2 < Ba, lyil < By, a.s.

H = TFy(H)

IN+1 = r/e\a/dy(ljl) = clipp ((ﬁNJrl)dH)

Ridge Regression Estimation

A
Wridge

Yihong Zuo

1 N

) A
= arg min N Z ((w, %) — yi)2 + 5”“’”%

weRd 2 ;
=1
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Main Approximation Theorem

Theorem 5 (Implementing in-context ridge regression)

Forany A >0, 0 < a < (8 with k *Bii‘\,B >0, and e < ByBy/2,

there exists an L-layer attention-only transformer TF2 with

L = [2klog(ByBuw/(2¢))]+1, e MO <3, [|0]lop < AR+8(B+
S

g

(with R := max{By By, By, 1}) such that the following holds. On any
input data (D, xny1) such that the problem (ICRidge) is well-conditioned
and has a bounded solution:

o < Amin(XTX/N) < Anax(XTX/N) < B, [Whagell2 < Buw/2,

TFY approximately implements (ICRidge): The prediction
gn+1 = read, (TF)(H)) satisfies

~ A
YN+1 — <Wridg67 XN+1> <e
Yihong Zuo Basics of Transformers, Learning Theory June 10, 2025 16 / 42




Main Approximation Theorem

Theorem 6 (Implementing in-context ridge regression)

Further, the second-to-last layer approximates wﬁ‘idge : we have
L—1 .
Iready, (h{" ™) — wiyoll2 < e/Bx for all i € [N +1] .
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Machanism: Approximating Gradient Descent

1 < A
)2 2
Vf,%%ldll w) = oN E_ W,X;) — + §||W||2

Gradient Descent lteration

wh = whl -V, L(w)

N:l
= whl— (;7; <<(Wk 17_1)7(Xi7yl)>) XZ) ?;wkl

Note that x = o(z) — o(—

x) for any x € R, The above iteration happens
to be an attention!
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Diagram

Attention
Weight
construction
N M
? = 33 a, o (b,
i=1 m=1
Universal 0G0 =3" a,-o(by-s + cp-t)
approximation m=1
Gradient - 7 % 0.7 -
= - N £ w X [ %
descent L N; (R, ) ) X [x]
Yihong Zuo Basics of Transformers, Learning Theory ne 10, 2025 19 /42




Extension: Lasso

N
. 1 )
1 L —_ —_— : -_ > A
v{rlélﬂgd lasso(w) ON ;1 (<W7Xz> yz) + NHWHI
N
) 2
p— = — N _— ;> A
Wiasso aivgerﬂiljn 5N ;1 ((w,x;) —yi)” + An[[wl1
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Implementing in-context Lasso

Theorem 7 (Implementing in-context Lasso)

Forany Ay >0, 8 >0, B, >0, and € > 0, there exists a L-layer
transformer TFy with

2
L= FBB —‘—1—1 max M) <2, maxD® <2d, 0] <O (R+(1+A
€ ¢e[L] te[L]

(where R := max{B;B,, By, 1}) such that the following holds. On any
input data (D,xy41) such that

Amax (XTX/N) < B and  ||Wiassoll2 < Buw/2,

TFy(H©) approximately implements (ICLasso), in that it outputs
UN+1 = (XN41, W) with

[A/lasso(vAV) - i//asso(wlasso) L&

v
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Machanism: Approximating Proximal GD

Gradient step:
(t+3) (t) 1 EN: (t)
w2 =w —77-—‘:1 <<W ,xi>—yi)xi

This is the same as the ridge regression which can be achived by an
Attention.
Proximal step (soft-thresholding):

wittl) — sign (w(t‘%)) - max (‘W(H_%) —nAnN, O)

= o(w*3) —pAy) — o(~w*2) —pay)

This can be achived by the MLP layer.

Yihong Zuo Basics of Transformers, Learning Theory June 10, 2025 22 /42



Extension: Regulized M-Estimator

N
Z W Xiy Yi +R( )

Proximal Graient Descent:

t+1 . ¢ 2Ot
Wpap = Prox,r | Wwpap — nVLy(Wpap) |
SN—— -
MLP Attention
N
0 1
where we denote Ly = Z w' Xiy Yi)-
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Implementing In-Context M-estimation

Definition 8 (Approximability by sum of relus)

A function g : RF — R is (gapprox, R, M, C)-approximable by sum of relus,
if there exists a ‘(M, C)-sum of relus” function

M
fruco() =" emol(a),(z; 1))
m=1
with
M
Z lem] < C, max [lan|i <1, an, € R¥ ¢, € R,
oy’ me([M]

such that

sup \g(z) - fM,C'(Z)| < Eapprox-
z€[—R,R]*

v

Yihong Zuo Basics of Transformers, Learning Theory June 10, 2025 24 /42



Implementing In-Context M-estimation

Definition 9 (Approximability by MLP)

An operator P : R? — R is (¢, R, D, C)-approximable by MLP, if there
exists an MLP 6,1, = (W1, W3) € RDxd o RAXD with hidden dimension
D, [[Willop + [W2llop < C, such that

sup |[|[P(w)—MLPy_(w)]2 <e.

[wl2<R

mlp
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Convex ICPGD

Theorem 10 (Convex ICGPD)
Fix any By, >0, L > 1,171 >0, and e +¢ < B,,/(2L). Suppose that
@ The loss ((-,-) is convex in the first argument;
@ 0.l is (g, R, M, C)-approximable by sum of relus with
R = max{B,B., By, 1}.
© R convex, and the proximal operator prox, (W) is
(ne', R', D', C")-approximable by MLP with
R’ = sup|jy|,<, Wil |2+ ne.
Then there exists a transformer TFy with (L + 1) layers,
maxge(z] M® < M heads within the first L layers, ML) = 2 and
hidden dimension D' such that, for any input data (D,xx41) such that

SUP  Amax <V2EN(W)) < 2/n,
[wll2<Buw
dw™* € arg min Ly(w) such that |w*|2 < By/2,
R

W
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Theorem 11

the transformer output TF¢(H®)) approximately implements (ICGD):

1. (Parameter space) For every { € [L|, the {-th layer's output

HO — TFéM) (H©) approximates { steps of (ICGD): We have

hge) = [xs;9}; W 0p_oq_3; 1;1;] for every i € [N + 1], where

IW" = whepll2 < (e +¢) - (LnBx).

2. (Prediction space) The final output HE+D = TF,(HO)
approximates the prediction of L steps of (ICGD):
We have

L+1 N ~I
hSVH) = [XN41; IN+1; W5 Op_oq—3; 15 4],
where UN+1 = <®L, XN+1> so that

[in+1 — (Whap, Xn41)| < (e +¢€) - (2LnB2).

Further, the weight matrices have norm bounds ||6|| < 3+ R+ 2nC + C".
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Overview

@ Transformer can achive algorithm selection
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Background
In the previous subsection, we have seen that Transformers can simulate a
variety of algorithms.

New Question
Can Transformers not only simulate algorithms, but also adaptively
select the most suitable algorithm based on the input data?

@ Is it possible for a Transformer to learn to choose between multiple
algorithms depending on the characteristics of the data?

@ Is it possible for a Transformer to choose optimal parameters for one
algorithm?
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Train-Validation Split

t; :== 1 for i € Dyrain, ti := —1 for i € Dy,, and tyy1 := 0.

In-context algorithm selection via train-validation split

Suppose that (-, -) is approximable by sum of relus (Definition 12, which
includes all C3-smooth bivariate functions). Then there exists a 3-layer
transformer TFy that maps (recalling v} = y;1{i < N + 1})

hi = x5 955 %5 fu(xa)s 5 fic(%a); Ok 15 ]
— h; = [Xi;yz{;*;f(xi); 1;t’i]7 1€ [N+ 1]7
where the predictor f : RY — R is a convex combination of

{fi: Lt (fx) < ming, ¢k Lyal(fr,) +7}. As a corollary, for any convex
risk L : (R - R) — R, f satisfies

L(f) < min L(fi.) + max |La(fi) = L{fi)| + 7

v
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Adaptive regression

Adaptive regression or classification; Informal version

There exists a transformer with O(log(1/€)) layers such that the following
holds: On any D such that y; € {0,1}, it outputs yn41 that
e-approximates the prediction of in-context logistic regression.

By contrast, for any distribution I whose marginal distribution of ¥ is not
concentrated around {0, 1}, with high probability (over D), yn1
e-approximates the prediction of in-context least squares.
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Pre Distribution Test

N
\Ijbinary l Z
N :

, y €{0,1},
Y(y) =40, yé&[—ee]U[l—¢1+¢],
linear interpolation, otherwise.

Lemma 18. There exists a single attention layer with 6 heads that
implements TPy exactly.

(1) )0 ()
+o <y—(i—a)> —2a<y€_1> +a(y_(i+€)>
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Overview

© Generalization Theory
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Generalization Theory

Denote
(0, Z29) = ¢ (read (TFG(H@))) , y}&l)

Recall the generalization error:

~

sup |[R(6) — R(0)| = sup

1
6co 6co |1

5 (6a(6.2) ~ Bb (6. 2)) ‘

=1

Denote ‘ ‘ ‘
Yy) = (0, 29) — Etiq (6, 29)

Ly ()
Xg:n;Ye
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One-step Chaining

We have

n

1
sup | Xg| < sup —ZY()
0co oco. |1

+sup inf |Xg — Xy
0cO 9€O:

where O, is a minimal finite e-covering of the parameter space ©. Suppose
the following conditions hold:

(a) The index set © is equipped with a distance p and has diameter D.
For some constant A, for any ball ©' of radius r in ©, the covering
number satisfies log N (9;0’, p) < dlog(2Ar /) for all 0 < § < 2r.

(b) For any fixed @ € © and z sampled from P, the random variable
Yo (2) is sub-Gaussian: Yg(z) ~ SG(BY).

(c) Forany 0,6 € © and z ~ IP,, the difference Yg(2) — Yo/ (2) is
sub-Gaussian: Yg(z) — Yo (2) ~ SG(B'p(0,6)).
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Bounding Term 1

Fix Dy € (0, D] to be specified later. Take a (Dg/2)-covering Og of O so
that log |©g| < dlog(2AD/Dy). By standard results on covering numbers

of independent sub-Gaussian random variables, with probability at least
1-6/2,

log(2AD/D log(2/6
sup |X9| < CBO\/ Og( / 0) —+ Og( / )
[ISSH n

where C'is a universal constant.
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Bounding Term 2

Assume ©¢ = {01,---,0,}. For each j € [n], let ©; be the ball centered
at @; with radius Dy in (©, p). For @ € ©;, ©; has diameter Dy and

log NV (©;,8) < dlog(ADy/9).

Applying Theorem in High-dimensional Statistics Section 5.6 to the process
{Xo}oco,  we get

Bl
— Xo — Xorlly < 0,0
w ¢27 H 0 0 ”’1/1 = \/ﬁp( ) )7
and
dlog(2A
P ( sup |Xg — Xg/| < C'B'Dy ( dlog(24) + t)) < 2exp(—nt?)
0,0'cO; n

, Vt>0.
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Generalization Bound

Theorem 12
Suppose (a), (b), (c) hold. Then with probability at least 1 — 6, we have

sup | Xo| < C,BO\/dlog(2A/f) + log(1/0)
6co n

where C is a universal constant, and k =1+ B'D/B°.
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Verification of the Assumptions

(a)
Lemma 13 (HDS, Example 5.8)
' let B= {0 € R?: 6] < 1}. Then

Given any norm || -

log N(6, 8, | - ) < dlog (1 | §)

(b) Since inputs and parameters are bounded, Yy is bounded and thus
sub-Gaussian.
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Lipschitzness of Transformers

Proposition 14 (Lipschitzness of transformers)
Fix the number of heads M and hidden dimension D'. Define

OTF,L.B = {0 = (9(1:L) Q(LL)) MO =M, DO =D |6] < B}

attn > “mlp

Then, for any fixed H, the function TF® js (LBL ™' Bg)-Lipschitz w.r.t.
0 € Orr,L,B-

(c) For all 6,0', Yo(Z) — Yo/ (Z) is BY||0 — 0'||op-sub-Gaussian for some
B!
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Generalization Bound of Pretraining

Theorem 15 (Generalization for pretraining)

With probability at least 1 — & (over the pretraining instances {Z} ;c(,),
the solution  to (TF-ERM) satisfies

- 0€@L,M,D’, n

Lia®) < inf  Lia(0)+0 <B§\/L2(MD2 +DD'). + 10g(1/§)> |

where + = log(2 + max{B, R, By}) is a log factor.

Yihong Zuo Basics of Transformers, Learning Theory June 10, 2025 39/42



Compose the Bounds

Theorem 16 (Pretraining transformers for in-context linear regression)

Suppose P ~ 7 is almost surely well-posed for in-context linear regression
(Assumption A) with the canonical parameters. Then, for N > O(d), with
probability at least 1 — & (over the training instances 7L ), the solution 6
of (TF-ERM) with L = O(klog(kN/c)) layers, M = 3 heads, D' = 0
(attention-only), and B = O(v/kd) achieves small excess ICL risk over wi:

~ 2
Lict(0) ~Ep~rE(x,y)~p [1(y — <W£,X>)Q] <0 <\/ wid” +log(1/6) | do”

e

2 n N

where 5() only hides polylogarithmic factors in k, N,1/o.

When we have sufficient training sample(n > O(k2N/0?),), the above
bound achieve Baysian optimal excess risk O(%)
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Overview

@ Conclusion
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o LLMs are autoregressive probabilistic models over sequences of
tokens.

@ Transformers are neural networks with Attention Layers.

@ In-context learning is the ability to learn tasks and generate
corresponding outputs by entering examples without parameter
updates.

@ Approximation Error can be bounded by constructing a specific
model to simulate an algorithnm.

o Generilization Error can be bounded by chaining methods.

Yihong Zuo Basics of Transformers, Learning Theory June 10, 2025 41 /42



References

© Bai, Yu, et al. "Transformers as statisticians: Provable in-context
learning with in-context algorithm selection." Advances in neural
information processing systems 36 (2023): 57125-57211.

@ Vaswani, Ashish, et al. "Attention is all you need." Advances in neural
information processing systems 30 (2017).

© Wainwright, Martin J. High-dimensional statistics: A non-asymptotic
viewpoint. Vol. 48. Cambridge university press, 2019.

Yihong Zuo Basics of Transformers, Learning Theory June 10, 2025 42 /42



	Transformers
	In-context Learning
	Transformers can learn linear regression in context
	Transformer can achive algorithm selection
	Generalization Theory
	Conclusion

