Basics of Transformers, Learning Theory and In-context Learning

Yihong Zuo

June 10, 2025

Yihong Zuo

Basics of Transformers, Learning Theory

June 10, 2025

1 Transformers

- 2 In-context Learning
- 3 Transformers can learn linear regression in context
- 4 Transformer can achive algorithm selection
- 5 Generalization Theory
- 6 Conclusion

- LLMs are autoregressive probabilistic models defined over sequences of tokens.
- Input: A sequence prefix $(x_1, x_2, \ldots, x_{t-1})$.
- **Output:** A probability distribution over the vocabulary for the next token x_t .
- Core mechanism: The model predicts one token at a time, conditioning on all previous tokens as context.

Decoder-only Transformer

• Let the input sequence be $[w_1, w_2, \ldots, w_n]$, where each token w_i is mapped to an embedding vector $h_i \in \mathbb{R}^d$.

Decoder-only Transformer

- Let the input sequence be $[w_1, w_2, \ldots, w_n]$, where each token w_i is mapped to an embedding vector $h_i \in \mathbb{R}^d$.
- The sequence is represented as a matrix:

$$H = [h_1; h_2; \dots; h_n] \in \mathbb{R}^{n \times d}$$

where H is the input to the first decoder layer.

• Add positional encodings:

$$\tilde{H} = H + P$$

where $P \in \mathbb{R}^{n \times d}$ is the positional encoding matrix.

Decoder-only Transformer

- Let the input sequence be $[w_1, w_2, \ldots, w_n]$, where each token w_i is mapped to an embedding vector $h_i \in \mathbb{R}^d$.
- The sequence is represented as a matrix:

$$H = [h_1; h_2; \dots; h_n] \in \mathbb{R}^{n \times d}$$

where H is the input to the first decoder layer.

• Add positional encodings:

$$\tilde{H} = H + P$$

where $P \in \mathbb{R}^{n \times d}$ is the positional encoding matrix.

• Each decoder layer applies masked self-attention and feed-forward networks to generate contextualized representations:

$$\tilde{H} \rightarrow \mathsf{Attention}_1 \rightarrow \mathsf{FFN}_1 \rightarrow \cdots \rightarrow \mathsf{Attention}_L \rightarrow \mathsf{FFN}_L$$

• The output at each position i is used to predict the next token w_{i+1} :

$$\hat{y}_i = \mathsf{Softmax}(Wh_i^{(L)} + b)$$

Definition 1

(Self-Attention layer with Softmax). A multi-head self-attention layer with M heads is denoted as $Attn_{\theta}(\cdot)$, where

$$oldsymbol{ heta} = \left\{ (oldsymbol{Q}_m, oldsymbol{K}_m, oldsymbol{V}_m) \in \mathbb{R}^{D imes D}
ight\}_{m=1}^M$$

Given input $oldsymbol{H} = [h_1, \dots, h_N] \in \mathbb{R}^{D imes N}$, the layer outputs:

$$\operatorname{Attn}_{\boldsymbol{\theta}}(\boldsymbol{H}) := \boldsymbol{H} + \sum_{m=1}^{M} \boldsymbol{V}_m \boldsymbol{H} \cdot \operatorname{Softmax}\left((\boldsymbol{Q}_m \boldsymbol{H})^{\top} (\boldsymbol{K}_m \boldsymbol{H}) \right),$$

where Softmax is applied column-wise (across keys for each query).

For each token $h_i \in \mathbb{R}^D$, the updated representation is:

$$\tilde{h}_i := h_i + \sum_{m=1}^M \sum_{j=1}^N \alpha_{ij}^{(m)} \cdot \mathbf{V}_m h_j,$$

where the attention weights $\alpha_{ij}^{(m)}$ are computed by

$$\alpha_{ij}^{(m)} = \frac{\exp\left(\langle \boldsymbol{Q}_m h_i, \, \boldsymbol{K}_m h_j \rangle\right)}{\sum_{k=1}^{N} \exp\left(\langle \boldsymbol{Q}_m h_i, \, \boldsymbol{K}_m h_k \rangle\right)}$$

- ${oldsymbol Q}_m h_i$: query what token i wants to know
- $K_m h_j$: key what token j is about
- $V_m h_j$: value information token j provides

Advantages

- Captures long-range dependencies via self-attention
- Highly parallelizable (unlike RNNs)
- Scales efficiently with data and compute
- Achieves strong empirical performance on a wide range of tasks (NLP, vision, etc.)

Advantages

- Captures long-range dependencies via self-attention
- Highly parallelizable (unlike RNNs)
- Scales efficiently with data and compute
- Achieves strong empirical performance on a wide range of tasks (NLP, vision, etc.)

Limitations

- Quadratic time and memory complexity in sequence length
- Each new token requires re-evaluating the full Transformer over all previous tokens

Solutions: Key-Value (KV) cache, Speculative Sampling

1 Transformers

In-context Learning

3 Transformers can learn linear regression in context

4 Transformer can achive algorithm selection

5 Generalization Theory

6 Conclusion

The In-Context Learning (ICL) Capability

Figure: Enter Caption

< 47 ▶

→

э

The In-Context Learning (ICL) Capability

Figure: Enter Caption

- A Transformer is meta-trained on diverse tasks.
- At inference, given a prompt with a few input-output pairs (x_i, y_i) , and a new input x_{N+1} , the model predicts y_{N+1} .
- No explicit parameter update—learning happens "in context"!

In-context learning capability

Let $\{(x_i, y_i)\}_{i=1}^{N+1} \sim \mathbb{P}$, with \mathbb{P} unknown to the model. Form the context input $H = [x_1, y_1, x_2, y_2, \dots, x_N, y_N, x_{N+1}]$. Output a good estimate $\hat{y}_{N+1} = \operatorname{TF}_{\hat{\theta}}(H) \approx y_{N+1}$.

Formulating the Problem

For a loss function $\ell(\cdot,\cdot)\text{,}$ our goal is to minimize the population risk:

$$\mathcal{R}(\theta) = \mathbb{E}_{\{(x_i, y_i)\} \sim \mathbb{P}} \left[\ell(\mathrm{TF}_{\theta}(H), y_{N+1}) \right].$$

Given *n* samples $H^{(j)} = [x_1^{(j)}, y_1^{(j)}, \dots, x_{N+1}^{(j)}]$ and $y_{N+1}^{(j)}$, we perform empirical risk minimization (ERM):

$$\min_{\theta} \hat{\mathcal{R}}(\theta) = \frac{1}{n} \sum_{j=1}^{n} \ell(\mathrm{TF}_{\theta}(H^{(j)}), y_{N+1}^{(j)})$$

Formulating the Problem

For a loss function $\ell(\cdot,\cdot),$ our goal is to minimize the population risk:

$$\mathcal{R}(\theta) = \mathbb{E}_{\{(x_i, y_i)\} \sim \mathbb{P}} \left[\ell(\mathrm{TF}_{\theta}(H), y_{N+1}) \right].$$

Given *n* samples $H^{(j)} = [x_1^{(j)}, y_1^{(j)}, \dots, x_{N+1}^{(j)}]$ and $y_{N+1}^{(j)}$, we perform empirical risk minimization (ERM):

$$\min_{\theta} \hat{\mathcal{R}}(\theta) = \frac{1}{n} \sum_{j=1}^{n} \ell(\mathrm{TF}_{\theta}(H^{(j)}), y_{N+1}^{(j)})$$

This leads to a random, non-convex optimization problem, typically solved via stochastic gradient descent (SGD). Suppose SGD returns an approximate solution:

$$\hat{ heta} \in \left\{ heta \, \Big| \, \hat{\mathcal{R}}(heta) \leq \inf_{ heta \in \Theta} \hat{\mathcal{R}}(heta) + \Delta_{ ext{opt}}
ight\}$$

Our goal: to upper bound the population risk $\mathcal{R}(\hat{\theta})$.

$$\begin{aligned} \mathcal{R}(\hat{\theta}) &= \mathcal{R}(\hat{\theta}) - \hat{\mathcal{R}}(\hat{\theta}) + \hat{\mathcal{R}}(\hat{\theta}) \\ &\leq \sup_{\theta \in \Theta} \left(\mathcal{R}(\theta) - \hat{\mathcal{R}}(\theta) \right) + \inf_{\theta \in \Theta} \hat{\mathcal{R}}(\theta) + \Delta_{\text{opt}} \\ &\leq \underbrace{2 \sup_{\theta \in \Theta} \left| \mathcal{R}(\theta) - \hat{\mathcal{R}}(\theta) \right|}_{\text{generalization error}} + \underbrace{\inf_{\theta \in \Theta} \mathcal{R}(\theta)}_{\text{approximation error}} + \underbrace{\Delta_{\text{opt}}}_{\text{optimization error}} \end{aligned}$$

June 10, 2025

Image: A matrix

< ∃⇒

æ

• Generalization error: Often bounded using the chaining method or covering arguments.

June 10, 2025

- Generalization error: Often bounded using the chaining method or covering arguments.
- Approximation error: Case-dependent; typically bounded by explicitly constructing a suitable θ .

- Generalization error: Often bounded using the chaining method or covering arguments.
- Approximation error: Case-dependent; typically bounded by explicitly constructing a suitable θ .
- Optimization error: Hard to analyze, especially for deep networks. Most works assume it is negligible or zero; we make the same assumption here. For shallow (1–2 layer) networks, some results are known, but we defer their discussion.

1 Transformers

2 In-context Learning

Transformers can learn linear regression in context

- Transformer can achive algorithm selection
- 5 Generalization Theory
- 6 Conclusion

In the following, we use a simplified Transformer to simplify the theoretical analysis.

Definition 2

(Attention layer). A (self-)attention layer with M heads is denoted as $Attn_{\theta}(\cdot)$ with parameters $\theta = \{(\mathbf{V}_m, \mathbf{Q}_m, \mathbf{K}_m)\}_{m \in [M]} \subset \mathbb{R}^{D \times D}$. On any input sequence $\mathbf{H} \in \mathbb{R}^{D \times N}$,

$$\widetilde{\mathbf{H}} = \operatorname{Attn}_{\boldsymbol{\theta}}(\mathbf{H}) := \mathbf{H} + \frac{1}{N} \sum_{m=1}^{M} \left(\mathbf{V}_m \mathbf{H} \cdot \sigma \left((\mathbf{Q}_m \mathbf{H})^\top (\mathbf{K}_m \mathbf{H}) \right) \right) \in \mathbb{R}^{D \times N},$$

where $\sigma:\mathbb{R}\to\mathbb{R}$ is the ReLU function. In vector form,

$$\widetilde{\mathbf{h}}_{i} = [\operatorname{Attn}_{\boldsymbol{\theta}}(\mathbf{H})]_{i} = \mathbf{h}_{i} + \sum_{m=1}^{M} \frac{1}{N} \sum_{j=1}^{N} \sigma \left(\langle \mathbf{Q}_{m} \mathbf{h}_{i}, \mathbf{K}_{m} \mathbf{h}_{j} \rangle \right) \cdot \mathbf{V}_{m} \mathbf{h}_{j}.$$

Definition 3

(MLP layer). A (token-wise) MLP layer with hidden dimension D' is denoted as

 $\mathrm{MLP}_{\boldsymbol{\theta}}(\cdot)$ with parameters $\boldsymbol{\theta} = (\mathbf{W}_1, \mathbf{W}_2) \in \mathbb{R}^{D' \times D} \times \mathbb{R}^{D \times D'}$.

On any input sequence $\mathbf{H} \in \mathbb{R}^{D \times N}$,

$$\widetilde{\mathbf{H}} = \mathrm{MLP}_{\boldsymbol{\theta}}(\mathbf{H}) := \mathbf{H} + \mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{H}),$$

where $\ \sigma:\mathbb{R}\to\mathbb{R}$ is the ReLU function. In vector form, we have

 $\widetilde{\mathbf{h}}_i = \mathbf{h}_i + \mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{h}_i).$

Definition 4

(Transformer). An *L*-layer transformer, denoted as $TF_{\theta}(\cdot)$, is a composition of *L* self-attention layers each followed by an MLP layer:

$$\mathbf{H}^{(L)} = \mathrm{TF}_{oldsymbol{ heta}}(\mathbf{H}^{(0)}), \quad ext{where } \mathbf{H}^{(0)} \in \mathbb{R}^{D imes N}$$

is the input sequence, and

$$\mathbf{H}^{(\ell)} = \mathrm{MLP}_{\boldsymbol{\theta}_{\mathrm{mlp}}^{(\ell)}} \left(\mathrm{Attn}_{\boldsymbol{\theta}_{\mathrm{attn}}^{(\ell)}} (\mathbf{H}^{(\ell-1)}) \right), \quad \ell \in \{1, \dots, L\}.$$

Above, the parameter $\boldsymbol{\theta} = (\boldsymbol{\theta}_{attn}^{(1:L)}, \boldsymbol{\theta}_{mlp}^{(1:L)})$ consists of the attention layers $\boldsymbol{\theta}_{attn}^{(\ell)} = \{(\mathbf{V}_m^{(\ell)}, \mathbf{Q}_m^{(\ell)}, \mathbf{K}_m^{(\ell)})\}_{m \in [M]} \subset \mathbb{R}^{D \times D}$ and the MLP layers $\boldsymbol{\theta}_{mlp}^{(\ell)} = (\mathbf{W}_1^{(\ell)}, \mathbf{W}_2^{(\ell)}) \in \mathbb{R}^{D \times D'} \times \mathbb{R}^{D' \times D}.$

We additionally define the following norm of a transformer TF_{θ} :

$$\begin{split} \|\boldsymbol{\theta}\|_{op} &:= \\ \max_{\ell \in [L]} \left\{ \max_{m \in [M]} \left\{ \|\mathbf{Q}_m^{(\ell)}\|_{op}, \|\mathbf{K}_m^{(\ell)}\|_{op} \right\} + \sum_{m=1}^M \|\mathbf{V}_m^{(\ell)}\|_{op} + \|\mathbf{W}_1^{(\ell)}\|_{op} + \|\mathbf{W}_2^{(\ell)}\|_{op} \right\} \end{split}$$

We can prove that Transformer is Lipschitz continous to this norm when inputs are bounded.

Transformers

Input:

$$\mathbf{H} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ y_1 & y_2 & \cdots & y_N & 0 \\ \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_N & \mathbf{p}_{N+1} \end{bmatrix} \in \mathbb{R}^{D \times (N+1)}, \quad \mathbf{p}_i := \begin{bmatrix} \mathbf{0}_{D-(d+3)} \\ 1 \\ 1\{i < N+1\} \end{bmatrix} \in$$

We assume

$$\|\mathbf{x}_i\|_2 \le B_x, |y_i| \le B_y, a.s.$$

글 🕨 🔺 글 🕨

æ

Transformers

Input:

$$\mathbf{H} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N & \mathbf{x}_{N+1} \\ y_1 & y_2 & \cdots & y_N & 0 \\ \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_N & \mathbf{p}_{N+1} \end{bmatrix} \in \mathbb{R}^{D \times (N+1)}, \quad \mathbf{p}_i := \begin{bmatrix} \mathbf{0}_{D-(d+3)} \\ 1 \\ 1\{i < N+1\} \end{bmatrix} \in \mathbb{R}^{D \times (N+1)},$$

We assume

$$\|\mathbf{x}_i\|_2 \le B_x, |y_i| \le B_y, a.s.$$

Output:

$$\widetilde{\mathbf{H}} = \mathsf{TF}_{\theta}(\mathbf{H})$$
$$\widehat{y}_{N+1} = \widetilde{\mathrm{read}}_{y}(\widetilde{\mathbf{H}}) := \mathrm{clip}_{R}\left(\left(\widetilde{\mathbf{h}}_{N+1}\right)_{d+1}\right)$$

Ridge Regression Estimation

$$\mathbf{w}_{\mathsf{ridge}}^{\lambda} \coloneqq \arg\min_{\mathbf{w}\in\mathbb{R}^d} \frac{1}{2N} \sum_{i=1}^N \left(\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i \right)^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

Main Approximation Theorem

Theorem 5 (Implementing in-context ridge regression)

For any $\lambda \geq 0$, $0 \leq \alpha \leq \beta$ with $\kappa := \frac{\beta + \lambda}{\alpha + \lambda}$, $B_w > 0$, and $\varepsilon < B_x B_w/2$, there exists an L-layer attention-only transformer TF^0_{θ} with

 $L = \lceil 2\kappa \log(B_x B_w/(2\varepsilon)) \rceil + 1, \qquad \max_{\ell \in [L]} M^{(\ell)} \le 3, \qquad \|\theta\|_{op} \le 4R + 8(\beta + \lambda)$

(with $R := \max\{B_x B_w, B_y, 1\}$) such that the following holds. On any input data $(\mathcal{D}, \mathbf{x}_{N+1})$ such that the problem (ICRidge) is well-conditioned and has a bounded solution:

 $\alpha \leq \lambda_{\min}(\mathbf{X}^{\top}\mathbf{X}/N) \leq \lambda_{\max}(\mathbf{X}^{\top}\mathbf{X}/N) \leq \beta, \qquad \|\mathbf{w}_{\mathrm{ridge}}^{\lambda}\|_{2} \leq B_{w}/2,$

 TF_{θ}^{0} approximately implements (ICRidge): The prediction $\hat{y}_{N+1} = \mathrm{read}_{y}(\mathrm{TF}_{\theta}^{0}(\mathcal{H}))$ satisfies

$$\left|\hat{y}_{N+1} - \langle \mathbf{w}_{\mathrm{ridge}}^{\lambda}, \mathbf{x}_{N+1} \rangle \right| \leq \varepsilon.$$

Theorem 6 (Implementing in-context ridge regression) Further, the second-to-last layer approximates $\mathbf{w}_{ridge}^{\lambda}$: we have $\|read_w(\mathbf{h}_i^{(L-1)}) - \mathbf{w}_{ridge}^{\lambda}\|_2 \le \varepsilon/B_x$ for all $i \in [N+1]$.

Machanism: Approximating Gradient Descent

$$\min_{\mathbf{w}\in\mathbb{R}^d} L(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^N \left(\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i \right)^2 + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

Gradient Descent Iteration

$$\begin{aligned} \mathbf{w}^{k} &= \mathbf{w}^{k-1} - \eta \nabla_{\mathbf{w}} L(\mathbf{w}) \\ &= \mathbf{w}^{k-1} - \eta \left(\frac{1}{N} \sum_{i=1}^{N} \left(\langle \mathbf{w}^{k-1}, \mathbf{x}_{i} \rangle - y_{i} \right) \mathbf{x}_{i} + \lambda \mathbf{w}^{k-1} \right) \\ &= \mathbf{w}^{k-1} - \left(\frac{\eta}{N} \sum_{i=1}^{N} \left(\langle (\mathbf{w}^{k-1}, -1), (\mathbf{x}_{i}, y_{i}) \rangle \right) \mathbf{x}_{i} \right) - \frac{\eta \lambda}{N} \sum_{i=1}^{N} \mathbf{w}^{k-1} \end{aligned}$$

Note that $x = \sigma(x) - \sigma(-x)$ for any $x \in \mathbb{R}$, The above iteration happens to be an attention!

June 10, 2025

ヘロト ヘ回ト ヘヨト ヘヨト

3

$$\min_{\mathbf{w}\in\mathbb{R}^d} \hat{L}_{lasso}(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^N \left(\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i \right)^2 + \lambda_N \|\mathbf{w}\|_1$$
$$\mathbf{w}_{\mathsf{lasso}} = \operatorname*{arg\,min}_{\mathbf{w}\in\mathbb{R}^d} = \frac{1}{2N} \sum_{i=1}^N \left(\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i \right)^2 + \lambda_N \|\mathbf{w}\|_1$$

Yihong Zuo

Basics of Transformers, Learning Theory

June 10, 2025

∃ ► < ∃ ►</p>

æ

Theorem 7 (Implementing in-context Lasso)

For any $\lambda_N \ge 0$, $\beta > 0$, $B_w > 0$, and $\varepsilon > 0$, there exists a L-layer transformer TF_{θ} with

$$L = \left\lceil \frac{\beta B_w^2}{\varepsilon} \right\rceil + 1, \quad \max_{\ell \in [L]} M^{(\ell)} \le 2, \quad \max_{\ell \in [L]} D^{(\ell)} \le 2d, \quad \|\theta\| \le \mathcal{O}\left(R + (1 + \lambda_{\ell}) \right)$$

(where $R := \max\{B_x B_w, B_y, 1\}$) such that the following holds. On any input data (D, \mathbf{x}_{N+1}) such that

 $\lambda_{\max}(\mathbf{X}^{\top}\mathbf{X}/N) \leq \beta \quad \text{and} \quad \|\mathbf{w}_{\text{lasso}}\|_2 \leq B_w/2,$

 $TF_{\theta}(\mathbf{H}^{(0)})$ approximately implements (ICLasso), in that it outputs $\hat{y}_{N+1} = \langle \mathbf{x}_{N+1}, \hat{\mathbf{w}} \rangle$ with

$$\hat{L}_{\textit{lasso}}(\hat{\mathbf{w}}) - \hat{L}_{\textit{lasso}}(\mathbf{w}_{\textit{lasso}}) \leq \varepsilon.$$

< (T) > <

Gradient step:

$$\mathbf{w}^{(t+\frac{1}{2})} = \mathbf{w}^{(t)} - \eta \cdot \frac{1}{N} \sum_{i=1}^{N} \left(\left\langle \mathbf{w}^{(t)}, \mathbf{x}_i \right\rangle - y_i \right) \mathbf{x}_i$$

This is the same as the ridge regression which can be achived by an Attention.

Proximal step (soft-thresholding):

$$\mathbf{w}^{(t+1)} = \operatorname{sign}\left(\mathbf{w}^{(t+\frac{1}{2})}\right) \cdot \max\left(\left|\mathbf{w}^{(t+\frac{1}{2})}\right| - \eta\lambda_N, 0\right)$$
$$= \sigma(\mathbf{w}^{(t+\frac{1}{2})} - \eta\lambda_N) - \sigma(-\mathbf{w}^{(t+\frac{1}{2})} - \eta\lambda_N)$$

This can be achived by the MLP layer.

June 10, 2025

$$\hat{L}_N(\mathbf{w}) := \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + \mathcal{R}(\mathbf{w})$$

Proximal Graient Descent:

$$\mathbf{w}_{\mathrm{PGD}}^{t+1} := \underbrace{\mathrm{prox}_{\eta \mathcal{R}}}_{\mathsf{MLP}} \left(\underbrace{\mathbf{w}_{\mathrm{PGD}}^t - \eta \nabla \hat{L}_N^0(\mathbf{w}_{\mathrm{PGD}}^t)}_{\mathsf{Attention}} \right),$$

where we denote
$$\ \ \hat{L}_N^0(\mathbf{w}) := rac{1}{N} \sum_{i=1}^N \ell(\mathbf{w}^ op \mathbf{x}_i, y_i).$$

Yihong Zuo

June 10, 2025

표 문 문

Implementing In-Context M-estimation

Definition 8 (Approximability by sum of relus)

A function $g: \mathbb{R}^k \to \mathbb{R}$ is $(\varepsilon_{approx}, R, M, C)$ -approximable by sum of relus, if there exists a '(M, C)-sum of relus' function

$$f_{M,C}(\mathbf{z}) = \sum_{m=1}^{M} c_m \sigma(\mathbf{a}_m^{\top}[\mathbf{z};1])$$

with

$$\sum_{m=1}^{M} |c_m| \le C, \quad \max_{m \in [M]} \|\mathbf{a}_m\|_1 \le 1, \quad \mathbf{a}_m \in \mathbb{R}^{k+1}, \ c_m \in \mathbb{R}$$

such that

$$\sup_{\mathbf{z}\in[-R,R]^k}|g(\mathbf{z})-f_{M,C}(\mathbf{z})|\leq\varepsilon_{\text{approx}}.$$

Definition 9 (Approximability by MLP)

An operator $P : \mathbb{R}^d \to \mathbb{R}^d$ is (ε, R, D, C) -approximable by MLP, if there exists an MLP $\theta_{mlp} = (\mathbf{W}_1, \mathbf{W}_2) \in \mathbb{R}^{D \times d} \times \mathbb{R}^{d \times D}$ with hidden dimension D, $\|\mathbf{W}_1\|_{op} + \|\mathbf{W}_2\|_{op} \leq C$, such that

$$\sup_{\mathbf{w}} \|P(\mathbf{w}) - \mathrm{MLP}_{\theta_{\mathrm{mlp}}}(\mathbf{w})\|_2 \le \varepsilon.$$

Convex ICPGD

Theorem 10 (Convex ICGPD)

Fix any $B_w > 0$, L > 1, $\eta > 0$, and $\varepsilon + \varepsilon' \le B_w/(2L)$. Suppose that

- The loss $\ell(\cdot, \cdot)$ is convex in the first argument;
- ∂_sℓ is (ε, R, M, C)-approximable by sum of relus with R = max{B_xB_w, B_y, 1}.
- \mathcal{R} convex, and the proximal operator $\operatorname{prox}_{\eta \mathcal{R}}(\mathbf{w})$ is $(\eta \varepsilon', R', D', C')$ -approximable by MLP with $R' = \sup_{\|\mathbf{w}\|_2 \leq B_w} \|\mathbf{w}_{\eta}^+\|_2 + \eta \varepsilon.$

Then there exists a transformer TF_{θ} with (L+1) layers, $\max_{\ell \in [L]} M^{(\ell)} \leq M$ heads within the first L layers, $M^{(L+1)} = 2$, and hidden dimension D' such that, for any input data $(\mathcal{D}, \mathbf{x}_{N+1})$ such that

$$\sup_{\|\mathbf{w}\|_{2} \le B_{w}} \lambda_{\max} \left(\nabla^{2} \widehat{L}_{N}(\mathbf{w}) \right) \le 2/\eta,$$

$$\exists \mathbf{w}^{*} \in \arg \min_{\mathbf{w} \in \mathbb{R}^{d}} \widehat{L}_{N}(\mathbf{w}) \text{ such that } \|\mathbf{w}^{*}\|_{2} \le B_{w}/2,$$

Theorem 11

the transformer output $TF_{\theta}(\mathbf{H}^{(0)})$ approximately implements (ICGD):

1. (Parameter space) For every $\ell \in [L]$, the ℓ -th layer's output $\mathbf{H}^{(\ell)} = \mathrm{TF}^{(1:\ell)}_{\theta}(\mathbf{H}^{(0)})$ approximates ℓ steps of (ICGD): We have $\mathbf{h}^{(\ell)}_i = [\mathbf{x}_i; y'_i; \widehat{\mathbf{w}}^{\ell}; 0_{D-2d-3}; 1; t_i]$ for every $i \in [N+1]$, where

$$\|\widehat{\mathbf{w}}^{\ell} - \mathbf{w}_{\text{PGD}}^{\ell}\|_2 \le (\varepsilon + \varepsilon') \cdot (L\eta B_x).$$

 (Prediction space) The final output H^(L+1) = TF_θ(H⁽⁰⁾) approximates the prediction of L steps of (ICGD): We have

$$\mathbf{h}_{N+1}^{(L+1)} = [\mathbf{x}_{N+1}; \, \hat{y}_{N+1}; \, \widehat{\mathbf{w}}^L; \, 0_{D-2d-3}; \, 1; \, t_i],$$

where $\hat{y}_{N+1} = \langle \widehat{\mathbf{w}}^L, \, \mathbf{x}_{N+1}
angle$ so that

$$\left|\hat{y}_{N+1} - \langle \mathbf{w}_{\text{PGD}}^L, \mathbf{x}_{N+1} \rangle \right| \leq (\varepsilon + \varepsilon') \cdot (2L\eta B_x^2).$$

Further, the weight matrices have norm bounds $\|\theta\| \leq 3 + R + 2\eta C + C'$.

Yihong Zuo

27 / 42

1 Transformers

- 2 In-context Learning
- 3 Transformers can learn linear regression in context
- 4 Transformer can achive algorithm selection
- 5 Generalization Theory
- 6 Conclusion

Background

In the previous subsection, we have seen that Transformers can simulate a variety of algorithms.

New Question

Can Transformers not only simulate algorithms, but also *adaptively select* the most suitable algorithm based on the input data?

- Is it possible for a Transformer to learn to choose between multiple algorithms depending on the characteristics of the data?
- Is it possible for a Transformer to choose optimal parameters for one algorithm?

Train-Validation Split

$$t_i := 1$$
 for $i \in \mathcal{D}_{\text{train}}$, $t_i := -1$ for $i \in \mathcal{D}_{\text{val}}$, and $t_{N+1} := 0$.

In-context algorithm selection via train-validation split

Suppose that $\ell(\cdot, \cdot)$ is approximable by sum of relus (*Definition 12*, which includes all C^3 -smooth bivariate functions). Then there exists a 3-layer transformer TF_{θ} that maps (recalling $y'_i = y_i \mathbf{1}\{i < N + 1\}$)

$$\mathbf{h}_{i} = [\mathbf{x}_{i}; y'_{i}; *; f_{1}(\mathbf{x}_{i}); \cdots; f_{K}(\mathbf{x}_{i}); \mathbf{0}_{K+1}; 1; t_{i}] \\ \longrightarrow \mathbf{h}'_{i} = [\mathbf{x}_{i}; y'_{i}; *; \hat{f}(\mathbf{x}_{i}); 1; t_{i}], \ i \in [N+1],$$

where the predictor $\hat{f} : \mathbb{R}^d \to \mathbb{R}$ is a convex combination of $\{f_k : \hat{L}_{val}(f_k) \leq \min_{k_\star \in [K]} \hat{L}_{val}(f_{k_\star}) + \gamma\}$. As a corollary, for any convex risk $L : (\mathbb{R}^d \to \mathbb{R}) \to \mathbb{R}$, \hat{f} satisfies

$$L(\hat{f}) \le \min_{k_{\star} \in [K]} L(f_{k_{\star}}) + \max_{k \in [K]} \left| \hat{L}_{\operatorname{val}}(f_k) - L(f_k) \right| + \gamma.$$

Adaptive regression or classification; Informal version

There exists a transformer with $\mathcal{O}(\log(1/\epsilon))$ layers such that the following holds: On any \mathcal{D} such that $y_i \in \{0, 1\}$, it outputs \hat{y}_{N+1} that ϵ -approximates the prediction of *in-context logistic regression*.

By contrast, for any distribution \mathbb{P} whose marginal distribution of y is not concentrated around $\{0,1\}$, with high probability (over \mathcal{D}), \hat{y}_{N+1} ϵ -approximates the prediction of *in-context least squares*.

Pre Distribution Test

$$\begin{split} \Psi^{\text{binary}}(\mathcal{D}) &= \frac{1}{N} \sum_{i=1}^{N} \psi(y_i), \\ \psi(y) &:= \begin{cases} 1, & y \in \{0,1\}, \\ 0, & y \notin [-\varepsilon,\varepsilon] \cup [1-\varepsilon,1+\varepsilon], \\ \text{linear interpolation,} & \text{otherwise.} \end{cases} \end{split}$$

Lemma 18. There exists a single attention layer with 6 heads that implements Ψ^{binary} exactly.

$$\begin{split} \psi(y) &= \sigma\left(\frac{y+\varepsilon}{\varepsilon}\right) - 2\sigma\left(\frac{y}{\varepsilon}\right) + \sigma\left(\frac{y-\varepsilon}{\varepsilon}\right) \\ &+ \sigma\left(\frac{y-(1-\varepsilon)}{\varepsilon}\right) - 2\sigma\left(\frac{y-1}{\varepsilon}\right) + \sigma\left(\frac{y-(1+\varepsilon)}{\varepsilon}\right) \end{split}$$

э

Transformers

- 2 In-context Learning
- 3 Transformers can learn linear regression in context
- 4 Transformer can achive algorithm selection
- 5 Generalization Theory

6 Conclusion

Denote

$$\ell_{\rm icl}(\boldsymbol{\theta}, \boldsymbol{Z}^{(i)}) = \ell \left({\rm read} \left({\rm TF}_{\boldsymbol{\theta}}(\boldsymbol{H}^{(i)}) \right), \, y_{N+1}^{(i)} \right)$$

Recall the generalization error:

$$\sup_{\boldsymbol{\theta}\in\Theta} \left| \mathcal{R}(\boldsymbol{\theta}) - \widehat{\mathcal{R}}(\boldsymbol{\theta}) \right| = \sup_{\boldsymbol{\theta}\in\Theta} \left| \frac{1}{n} \sum_{i=1}^{n} \left(\ell_{\mathrm{icl}}(\boldsymbol{\theta}, \boldsymbol{Z}^{(i)}) - \mathbb{E}\ell_{\mathrm{icl}}(\boldsymbol{\theta}, \boldsymbol{Z}^{(i)}) \right) \right|$$

Denote

$$Y_{\boldsymbol{\theta}}^{(i)} = \ell_{\rm icl}(\boldsymbol{\theta}, \boldsymbol{Z}^{(i)}) - \mathbb{E}\ell_{\rm icl}(\boldsymbol{\theta}, \boldsymbol{Z}^{(i)})$$
$$X_{\boldsymbol{\theta}} = \frac{1}{n} \sum_{i=1}^{n} Y_{\boldsymbol{\theta}}^{(i)}$$

Yihong Zuo

June 10, 2025

표 문 문

We have

$$\sup_{\boldsymbol{\theta}\in\Theta} |X_{\boldsymbol{\theta}}| \le \sup_{\boldsymbol{\theta}\in\Theta_{\varepsilon}} \left| \frac{1}{n} \sum_{i=1}^{n} Y_{\boldsymbol{\theta}}^{(i)} \right| + \sup_{\boldsymbol{\theta}\in\Theta} \inf_{\boldsymbol{\phi}\in\Theta_{\varepsilon}} |X_{\boldsymbol{\theta}} - X_{\boldsymbol{\phi}}|$$

where Θ_{ε} is a minimal finite ε -covering of the parameter space Θ . Suppose the following conditions hold:

- (a) The index set Θ is equipped with a distance ρ and has diameter D. For some constant A, for any ball Θ' of radius r in Θ , the covering number satisfies $\log N(\delta; \Theta', \rho) \leq d \log(2Ar/\delta)$ for all $0 < \delta \leq 2r$.
- (b) For any fixed $\theta \in \Theta$ and z sampled from \mathbb{P}_z , the random variable $Y_{\theta}(z)$ is sub-Gaussian: $Y_{\theta}(z) \sim SG(B^0)$.
- (c) For any $\theta, \theta' \in \Theta$ and $z \sim \mathbb{P}_z$, the difference $Y_{\theta}(z) Y_{\theta'}(z)$ is sub-Gaussian: $Y_{\theta}(z) Y_{\theta'}(z) \sim SG(B^1\rho(\theta, \theta'))$.

Fix $D_0 \in (0, D]$ to be specified later. Take a $(D_0/2)$ -covering Θ_0 of Θ so that $\log |\Theta_0| \leq d \log(2AD/D_0)$. By standard results on covering numbers of independent sub-Gaussian random variables, with probability at least $1 - \delta/2$,

$$\sup_{\boldsymbol{\theta} \in \Theta_0} |X_{\boldsymbol{\theta}}| \le CB^0 \sqrt{\frac{\log(2AD/D_0) + \log(2/\delta)}{n}}$$

where C is a universal constant.

Bounding Term 2

Assume $\Theta_0 = \{\theta_1, \dots, \theta_n\}$. For each $j \in [n]$, let Θ_j be the ball centered at θ_j with radius D_0 in (Θ, ρ) . For $\theta \in \Theta_j$, Θ_j has diameter D_0 and

 $\log \mathcal{N}(\Theta_j, \delta) \le d \log(AD_0/\delta).$

Applying Theorem in *High-dimensional Statistics* Section 5.6 to the process $\{X_{\theta}\}_{\theta \in \Theta_j}$, we get

$$\psi = \psi_2, \qquad ||X_{\theta} - X_{\theta'}||_{\psi} \le \frac{B^1}{\sqrt{n}} \rho(\theta, \theta'),$$

and

$$\mathbb{P}\left(\sup_{\boldsymbol{\theta},\boldsymbol{\theta}'\in\Theta_j}|X_{\boldsymbol{\theta}}-X_{\boldsymbol{\theta}'}| \leq C'B^1D_0\left(\sqrt{\frac{d\log(2A)}{n}}+t\right)\right) \leq 2\exp(-nt^2)$$
, $\forall t \geq 0.$

Theorem 12

Suppose (a), (b), (c) hold. Then with probability at least $1 - \delta$, we have

$$\sup_{\boldsymbol{\theta} \in \Theta} |X_{\boldsymbol{\theta}}| \le CB^0 \sqrt{\frac{d \log(2A\kappa) + \log(1/\delta)}{n}}$$

where C is a universal constant, and $\kappa = 1 + B^1 D/B^0$.

(a)

Lemma 13 (HDS, Example 5.8)
Given any norm
$$\|\cdot\|'$$
, let $\mathcal{B} = \{\boldsymbol{\theta} \in \mathbb{R}^d : \|\boldsymbol{\theta}\|' \le 1\}$. Then
 $\log N(\delta, \mathcal{B}, \|\cdot\|') \le d\log\left(1 + \frac{2}{\delta}\right)$

(b) Since inputs and parameters are bounded, Y_{θ} is bounded and thus sub-Gaussian.

Proposition 14 (Lipschitzness of transformers)

Fix the number of heads M and hidden dimension $D^\prime.$ Define

$$\Theta_{\mathrm{TF},L,B} = \left\{ \boldsymbol{\theta} = \left(\theta_{\mathrm{attn}}^{(1:L)}, \, \theta_{\mathrm{mlp}}^{(1:L)} \right) : M^{(\ell)} = M, \, D^{(\ell)} = D', \, \|\boldsymbol{\theta}\| \le B \right\}$$

Then, for any fixed H, the function $\mathrm{TF}^{\mathbb{R}}$ is $(LB_{H}^{L-1}B_{\Theta})$ -Lipschitz w.r.t. $\theta \in \Theta_{\mathrm{TF},L,B}$.

(c) For all $\theta, \theta', Y_{\theta}(Z) - Y_{\theta'}(Z)$ is $B^1 \|\theta - \theta'\|_{op}$ -sub-Gaussian for some B^1 .

Theorem 15 (Generalization for pretraining)

With probability at least $1 - \xi$ (over the pretraining instances $\{\mathbf{Z}^j\}_{j \in [n]}$), the solution $\hat{\theta}$ to (TF-ERM) satisfies

$$L_{\rm icl}(\hat{\theta}) \le \inf_{\theta \in \Theta_{L,M,D',B}} L_{\rm icl}(\theta) + \mathcal{O}\left(B_y^2 \sqrt{\frac{L^2(MD^2 + DD')\iota + \log(1/\xi)}{n}}\right),$$

where $\iota = \log(2 + \max\{B, R, B_y\})$ is a log factor.

Theorem 16 (Pretraining transformers for in-context linear regression) Suppose $\mathbf{P} \sim \pi$ is almost surely well-posed for in-context linear regression (Assumption A) with the canonical parameters. Then, for $N \geq \widetilde{\mathcal{O}}(d)$, with probability at least $1 - \xi$ (over the training instances $\mathbf{Z}^{(1:n)}$), the solution $\hat{\theta}$ of (TF-ERM) with $L = \mathcal{O}(\kappa \log(\kappa N/\sigma))$ layers, M = 3 heads, D' = 0(attention-only), and $B = \mathcal{O}(\sqrt{\kappa d})$ achieves small excess ICL risk over $\mathbf{w}_{\mathbf{P}}^{\star}$:

$$L_{\rm icl}(\hat{\theta}) - \mathbb{E}_{\mathbf{P} \sim \pi} \mathbb{E}_{(\mathbf{x}, y) \sim \mathbf{P}} \left[\frac{1}{2} (y - \langle \mathbf{w}_{\mathbf{P}}^{\star}, \mathbf{x} \rangle)^2 \right] \le \widetilde{\mathcal{O}} \left(\sqrt{\frac{\kappa^2 d^2 + \log(1/\xi)}{n}} + \frac{d\sigma^2}{N} \right)$$

where $\widetilde{\mathcal{O}}(\cdot)$ only hides polylogarithmic factors in $\kappa, N, 1/\sigma$.

When we have sufficient training sample($n \ge \widetilde{O}(\kappa^2 N/\sigma^2)$,), the above bound achieve Baysian optimal excess risk $\widetilde{O}(\frac{d\sigma^2}{N})$

Transformers

- 2 In-context Learning
- 3 Transformers can learn linear regression in context
- 4 Transformer can achive algorithm selection
- 5 Generalization Theory

- LLMs are autoregressive probabilistic models over sequences of tokens.
- Transformers are neural networks with Attention Layers.
- In-context learning is the ability to learn tasks and generate corresponding outputs by entering examples without parameter updates.
- Approximation Error can be bounded by **constructing** a specific model to **simulate an algorithnm**.
- Generilization Error can be bounded by chaining methods.

- Bai, Yu, et al. "Transformers as statisticians: Provable in-context learning with in-context algorithm selection." Advances in neural information processing systems 36 (2023): 57125-57211.
- Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
- Wainwright, Martin J. High-dimensional statistics: A non-asymptotic viewpoint. Vol. 48. Cambridge university press, 2019.