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Large Language Models (LLMs)

LLMs are autoregressive probabilistic models defined over
sequences of tokens.
Input: A sequence prefix (x1, x2, . . . , xt−1).
Output: A probability distribution over the vocabulary for the next
token xt.
Core mechanism: The model predicts one token at a time,
conditioning on all previous tokens as context.
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Decoder-only Transformer

Let the input sequence be [w1, w2, . . . , wn], where each token wi is
mapped to an embedding vector hi ∈ Rd.

The sequence is represented as a matrix:

H = [h1;h2; . . . ;hn] ∈ Rn×d

where H is the input to the first decoder layer.
Add positional encodings:

H̃ = H + P

where P ∈ Rn×d is the positional encoding matrix.
Each decoder layer applies masked self-attention and feed-forward
networks to generate contextualized representations:

H̃ → Attention1 → FFN1 → · · · → AttentionL → FFNL

The output at each position i is used to predict the next token wi+1:

ŷi = Softmax(Wh
(L)
i + b)
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ŷi = Softmax(Wh
(L)
i + b)

Yihong Zuo Basics of Transformers, Learning Theory and In-context LearningJune 10, 2025 3 / 42



Decoder-only Transformer

Let the input sequence be [w1, w2, . . . , wn], where each token wi is
mapped to an embedding vector hi ∈ Rd.
The sequence is represented as a matrix:

H = [h1;h2; . . . ;hn] ∈ Rn×d

where H is the input to the first decoder layer.
Add positional encodings:

H̃ = H + P

where P ∈ Rn×d is the positional encoding matrix.
Each decoder layer applies masked self-attention and feed-forward
networks to generate contextualized representations:

H̃ → Attention1 → FFN1 → · · · → AttentionL → FFNL

The output at each position i is used to predict the next token wi+1:
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Attention Layer

Definition 1
(Self-Attention layer with Softmax). A multi-head self-attention layer
with M heads is denoted as Attnθ(·), where

θ =
{
(Qm,Km,Vm) ∈ RD×D}M

m=1

Given input H = [h1, . . . , hN ] ∈ RD×N , the layer outputs:

Attnθ(H) := H +

M∑
m=1

VmH · Softmax
(
(QmH)⊤(KmH)

)
,

where Softmax is applied column-wise (across keys for each query).
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Token-wise View

For each token hi ∈ RD, the updated representation is:

h̃i := hi +

M∑
m=1

N∑
j=1

α
(m)
ij · Vmhj ,

where the attention weights α(m)
ij are computed by

α
(m)
ij =

exp (⟨Qmhi, Kmhj⟩)∑N
k=1 exp (⟨Qmhi, Kmhk⟩)

Qmhi: query — what token i wants to know
Kmhj : key — what token j is about
Vmhj : value — information token j provides
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Transformer: Pros and Cons

Advantages
Captures long-range dependencies via self-attention
Highly parallelizable (unlike RNNs)
Scales efficiently with data and compute
Achieves strong empirical performance on a wide range of tasks (NLP,
vision, etc.)

Limitations
Quadratic time and memory complexity in sequence length
Each new token requires re-evaluating the full Transformer over all
previous tokens
Solutions: Key-Value (KV) cache, Speculative Sampling
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The In-Context Learning (ICL) Capability

Figure: Enter Caption

A Transformer is meta-trained on diverse tasks.
At inference, given a prompt with a few input-output pairs (xi, yi),
and a new input xN+1, the model predicts yN+1.
No explicit parameter update—learning happens “in context”!
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Mathematical Definition of In-context Learning

In-context learning capability

Let {(xi, yi)}N+1
i=1 ∼ P, with P unknown to the model.

Form the context input H = [x1, y1, x2, y2, . . . , xN , yN , xN+1].
Output a good estimate ŷN+1 = TFθ̂(H) ≈ yN+1.
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Formulating the Problem

For a loss function ℓ(·, ·), our goal is to minimize the population risk:

R(θ) = E{(xi,yi)}∼P [ℓ(TFθ(H), yN+1)] .

Given n samples H(j) = [x
(j)
1 , y

(j)
1 , . . . , x

(j)
N+1] and y(j)N+1, we perform

empirical risk minimization (ERM):

min
θ

R̂(θ) =
1

n

n∑
j=1

ℓ(TFθ(H
(j)), y

(j)
N+1)

This leads to a random, non-convex optimization problem, typically solved
via stochastic gradient descent (SGD). Suppose SGD returns an
approximate solution:

θ̂ ∈
{
θ

∣∣∣∣ R̂(θ) ≤ inf
θ∈Θ

R̂(θ) + ∆opt

}
Our goal: to upper bound the population risk R(θ̂).
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Risk Decomposition

R(θ̂) = R(θ̂)− R̂(θ̂) + R̂(θ̂)

≤ sup
θ∈Θ

(
R(θ)− R̂(θ)

)
+ inf
θ∈Θ

R̂(θ) + ∆opt

≤ 2 sup
θ∈Θ

∣∣∣R(θ)− R̂(θ)
∣∣∣︸ ︷︷ ︸

generalization error

+ inf
θ∈Θ

R(θ)︸ ︷︷ ︸
approximation error

+ ∆opt︸︷︷︸
optimization error

Generalization error: Often bounded using the chaining method or
covering arguments.
Approximation error: Case-dependent; typically bounded by
explicitly constructing a suitable θ.
Optimization error: Hard to analyze, especially for deep networks.
Most works assume it is negligible or zero; we make the same
assumption here. For shallow (1–2 layer) networks, some results are
known, but we defer their discussion.
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In the following, we use a simplified Transformer to simplify the theoretical
analysis.

Definition 2
(Attention layer). A (self-)attention layer with M heads is denoted as
Attnθ(·) with parameters θ = {(Vm,Qm,Km)}m∈[M ] ⊂ RD×D. On any
input sequence H ∈ RD×N ,

H̃ = Attnθ(H) := H+
1

N

M∑
m=1

(
VmH · σ

(
(QmH)⊤(KmH)

))
∈ RD×N ,

where σ : R → R is the ReLU function. In vector form,

h̃i = [Attnθ(H)]i = hi +
M∑
m=1

1

N

N∑
j=1

σ (⟨Qmhi,Kmhj⟩) ·Vmhj .
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MLP Layer

Definition 3
(MLP layer). A (token-wise) MLP layer with hidden dimension D′ is
denoted as

MLPθ(·) with parameters θ = (W1,W2) ∈ RD
′×D × RD×D′

.

On any input sequence H ∈ RD×N ,

H̃ = MLPθ(H) := H+W2σ(W1H),

where σ : R → R is the ReLU function. In vector form, we have

h̃i = hi +W2σ(W1hi).
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Transformer

Definition 4
(Transformer). An L-layer transformer, denoted as TFθ(·), is a
composition of L self-attention layers each followed by an MLP layer:

H(L) = TFθ(H
(0)), where H(0) ∈ RD×N

is the input sequence, and

H(ℓ) = MLP
θ
(ℓ)
mlp

(
Attn

θ
(ℓ)
attn

(H(ℓ−1))
)
, ℓ ∈ {1, . . . , L}.

Above, the parameter θ = (θ
(1:L)
attn ,θ

(1:L)
mlp ) consists of the attention layers

θ
(ℓ)
attn = {(V(ℓ)

m ,Q
(ℓ)
m ,K

(ℓ)
m )}m∈[M ] ⊂ RD×D and the MLP layers

θ
(ℓ)
mlp = (W

(ℓ)
1 ,W

(ℓ)
2 ) ∈ RD×D′ × RD′×D.
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Norm of Parameters

We additionally define the following norm of a transformer TFθ:

∥θ∥op :=

max
ℓ∈[L]

{
max
m∈[M ]

{
∥Q(ℓ)

m ∥op, ∥K(ℓ)
m ∥op

}
+

M∑
m=1

∥V(ℓ)
m ∥op + ∥W(ℓ)

1 ∥op + ∥W(ℓ)
2 ∥op

}
.

We can prove that Transformer is Lipschitz continous to this norm when
inputs are bounded.
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Transformers

Input:

H =

x1 x2 · · · xN xN+1

y1 y2 · · · yN 0
p1 p2 · · · pN pN+1

 ∈ RD×(N+1), pi :=

 0D−(d+3)

1
1{i < N + 1}

 ∈ RD−(d+1).

We assume
∥xi∥2 ≤ Bx, |yi| ≤ By, a.s.

Output:
H̃ = TFθ(H)

ŷN+1 = r̃eady(H̃) := clipR

((
h̃N+1

)
d+1

)
Ridge Regression Estimation

wλ
ridge := arg min

w∈Rd

1

2N

N∑
i=1

(⟨w,xi⟩ − yi)
2 +

λ

2
∥w∥22
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Main Approximation Theorem

Theorem 5 (Implementing in-context ridge regression)

For any λ ≥ 0, 0 ≤ α ≤ β with κ := β+λ
α+λ , Bw > 0, and ε < BxBw/2,

there exists an L-layer attention-only transformer TF0
θ with

L = ⌈2κ log(BxBw/(2ε))⌉+1, max
ℓ∈[L]

M (ℓ) ≤ 3, ∥θ∥op ≤ 4R+8(β+λ)−1.

(with R := max{BxBw, By, 1}) such that the following holds. On any
input data (D,xN+1) such that the problem (ICRidge) is well-conditioned
and has a bounded solution:

α ≤ λmin(X
⊤X/N) ≤ λmax(X

⊤X/N) ≤ β, ∥wλ
ridge∥2 ≤ Bw/2,

TF0
θ approximately implements (ICRidge): The prediction

ŷN+1 = ready(TF
0
θ(H)) satisfies∣∣∣ŷN+1 − ⟨wλ

ridge,xN+1⟩
∣∣∣ ≤ ε.
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Main Approximation Theorem

Theorem 6 (Implementing in-context ridge regression)

Further, the second-to-last layer approximates wλ
ridge: we have

∥readw(h(L−1)
i )−wλ

ridge∥2 ≤ ε/Bx for all i ∈ [N + 1] .
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Machanism: Approximating Gradient Descent

min
w∈Rd

L(w) =
1

2N

N∑
i=1

(⟨w,xi⟩ − yi)
2 +

λ

2
∥w∥22

Gradient Descent Iteration

wk = wk−1 − η∇wL(w)

= wk−1 − η

(
1

N

N∑
i=1

(
⟨wk−1,xi⟩ − yi

)
xi + λwk−1

)

= wk−1 −

(
η

N

N∑
i=1

(
⟨(wk−1,−1), (xi, yi)⟩

)
xi

)
− ηλ

N

N∑
i=1

wk−1

Note that x = σ(x)− σ(−x) for any x ∈ R, The above iteration happens
to be an attention!
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Diagram
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Extension: Lasso

min
w∈Rd

L̂lasso(w) =
1

2N

N∑
i=1

(⟨w,xi⟩ − yi)
2 + λN∥w∥1

wlasso = argmin
w∈Rd

=
1

2N

N∑
i=1

(⟨w,xi⟩ − yi)
2 + λN∥w∥1
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Implementing in-context Lasso

Theorem 7 (Implementing in-context Lasso)
For any λN ≥ 0, β > 0, Bw > 0, and ε > 0, there exists a L-layer
transformer TFθ with

L =

⌈
βB2

w

ε

⌉
+1, max

ℓ∈[L]
M (ℓ) ≤ 2, max

ℓ∈[L]
D(ℓ) ≤ 2d, ∥θ∥ ≤ O

(
R+ (1 + λN )β

−1
)

(where R := max{BxBw, By, 1}) such that the following holds. On any
input data (D,xN+1) such that

λmax(X
⊤X/N) ≤ β and ∥wlasso∥2 ≤ Bw/2,

TFθ(H
(0)) approximately implements (ICLasso), in that it outputs

ŷN+1 = ⟨xN+1, ŵ⟩ with

L̂lasso(ŵ)− L̂lasso(wlasso) ≤ ε.
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Machanism: Approximating Proximal GD

Gradient step:

w(t+ 1
2
) = w(t) − η · 1

N

N∑
i=1

(〈
w(t),xi

〉
− yi

)
xi

This is the same as the ridge regression which can be achived by an
Attention.
Proximal step (soft-thresholding):

w(t+1) = sign
(
w(t+ 1

2
)
)
·max

(∣∣∣w(t+ 1
2
)
∣∣∣− ηλN , 0

)
= σ(w(t+ 1

2
) − ηλN )− σ(−w(t+ 1

2
) − ηλN )

This can be achived by the MLP layer.
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Extension: Regulized M-Estimator

L̂N (w) :=
1

N

N∑
i=1

ℓ(w⊤xi, yi) +R(w)

Proximal Graient Descent:

wt+1
PGD := proxηR︸ ︷︷ ︸

MLP

wt
PGD − η∇L̂0

N (w
t
PGD)︸ ︷︷ ︸

Attention

 ,

where we denote L̂0
N (w) :=

1

N

N∑
i=1

ℓ(w⊤xi, yi).
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Implementing In-Context M-estimation

Definition 8 (Approximability by sum of relus)

A function g : Rk → R is (εapprox, R,M,C)-approximable by sum of relus,
if there exists a ‘(M,C)-sum of relus” function

fM,C(z) =

M∑
m=1

cmσ(a
⊤
m[z; 1])

with

M∑
m=1

|cm| ≤ C, max
m∈[M ]

∥am∥1 ≤ 1, am ∈ Rk+1, cm ∈ R,

such that
sup

z∈[−R,R]k
|g(z)− fM,C(z)| ≤ εapprox.
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Implementing In-Context M-estimation

Definition 9 (Approximability by MLP)

An operator P : Rd → Rd is (ε,R,D,C)-approximable by MLP, if there
exists an MLP θmlp = (W1,W2) ∈ RD×d × Rd×D with hidden dimension
D, ∥W1∥op + ∥W2∥op ≤ C, such that

sup
∥w∥2≤R

∥P (w)−MLPθmlp
(w)∥2 ≤ ε.

Yihong Zuo Basics of Transformers, Learning Theory and In-context LearningJune 10, 2025 25 / 42



Convex ICPGD

Theorem 10 (Convex ICGPD)
Fix any Bw > 0, L > 1, η > 0, and ε+ ε′ ≤ Bw/(2L). Suppose that

1 The loss ℓ(·, ·) is convex in the first argument;
2 ∂sℓ is (ε,R,M,C)-approximable by sum of relus with
R = max{BxBw, By, 1}.

3 R convex, and the proximal operator proxηR(w) is
(ηε′, R′, D′, C ′)-approximable by MLP with
R′ = sup∥w∥2≤Bw

∥w+
η ∥2 + ηε.

Then there exists a transformer TFθ with (L+ 1) layers,
maxℓ∈[L]M

(ℓ) ≤M heads within the first L layers, M (L+1) = 2, and
hidden dimension D′ such that, for any input data (D,xN+1) such that

sup
∥w∥2≤Bw

λmax

(
∇2L̂N (w)

)
≤ 2/η,

∃w∗ ∈ arg min
w∈Rd

L̂N (w) such that ∥w∗∥2 ≤ Bw/2,
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Theorem 11
the transformer output TFθ(H(0)) approximately implements (ICGD):
1. (Parameter space) For every ℓ ∈ [L], the ℓ-th layer’s output

H(ℓ) = TF
(1:ℓ)
θ (H(0)) approximates ℓ steps of (ICGD): We have

h
(ℓ)
i = [xi; y

′
i; ŵ

ℓ; 0D−2d−3; 1; ti] for every i ∈ [N + 1], where

∥ŵℓ −wℓ
PGD∥2 ≤ (ε+ ε′) · (LηBx).

2. (Prediction space) The final output H(L+1) = TFθ(H
(0))

approximates the prediction of L steps of (ICGD):
We have

h
(L+1)
N+1 = [xN+1; ŷN+1; ŵ

L; 0D−2d−3; 1; ti],

where ŷN+1 = ⟨ŵL, xN+1⟩ so that∣∣ŷN+1 − ⟨wL
PGD, xN+1⟩

∣∣ ≤ (ε+ ε′) · (2LηB2
x).

Further, the weight matrices have norm bounds ∥θ∥ ≤ 3 +R+ 2ηC + C ′.
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Question

Background
In the previous subsection, we have seen that Transformers can simulate a
variety of algorithms.

New Question
Can Transformers not only simulate algorithms, but also adaptively
select the most suitable algorithm based on the input data?

Is it possible for a Transformer to learn to choose between multiple
algorithms depending on the characteristics of the data?
Is it possible for a Transformer to choose optimal parameters for one
algorithm?

Yihong Zuo Basics of Transformers, Learning Theory and In-context LearningJune 10, 2025 28 / 42



Train-Validation Split

ti := 1 for i ∈ Dtrain, ti := −1 for i ∈ Dval, and tN+1 := 0.

In-context algorithm selection via train-validation split
Suppose that ℓ(·, ·) is approximable by sum of relus (Definition 12, which
includes all C3-smooth bivariate functions). Then there exists a 3-layer
transformer TFθ that maps (recalling y′i = yi1{i < N + 1})

hi = [xi; y
′
i; ∗; f1(xi); · · · ; fK(xi);0K+1; 1; ti]

−→ h′
i = [xi; y

′
i; ∗; f̂(xi); 1; ti], i ∈ [N + 1],

where the predictor f̂ : Rd → R is a convex combination of
{fk : L̂val(fk) ≤ mink⋆∈[K] L̂val(fk⋆) + γ}. As a corollary, for any convex
risk L : (Rd → R) → R, f̂ satisfies

L(f̂) ≤ min
k⋆∈[K]

L(fk⋆) + max
k∈[K]

∣∣∣L̂val(fk)− L(fk)
∣∣∣+ γ.
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Adaptive regression

Adaptive regression or classification; Informal version
There exists a transformer with O(log(1/ϵ)) layers such that the following
holds: On any D such that yi ∈ {0, 1}, it outputs ŷN+1 that
ϵ-approximates the prediction of in-context logistic regression.

By contrast, for any distribution P whose marginal distribution of y is not
concentrated around {0, 1}, with high probability (over D), ŷN+1

ϵ-approximates the prediction of in-context least squares.

Yihong Zuo Basics of Transformers, Learning Theory and In-context LearningJune 10, 2025 30 / 42



Pre Distribution Test

Ψbinary(D) =
1

N

N∑
i=1

ψ(yi),

ψ(y) :=


1, y ∈ {0, 1},
0, y /∈ [−ε, ε] ∪ [1− ε, 1 + ε],

linear interpolation, otherwise.

Lemma 18. There exists a single attention layer with 6 heads that
implements Ψbinary exactly.

ψ(y) = σ

(
y + ε

ε

)
− 2σ

(y
ε

)
+ σ

(
y − ε

ε

)
+σ

(
y − (1− ε)

ε

)
− 2σ

(
y − 1

ε

)
+ σ

(
y − (1 + ε)

ε

)
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Generalization Theory

Denote
ℓicl(θ,Z

(i)) = ℓ
(
read

(
TFθ(H

(i))
)
, y

(i)
N+1

)
Recall the generalization error:

sup
θ∈Θ

∣∣∣R(θ)− R̂(θ)
∣∣∣ = sup

θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

(
ℓicl(θ,Z

(i))− Eℓicl(θ,Z(i))
)∣∣∣∣∣

Denote
Y

(i)
θ = ℓicl(θ,Z

(i))− Eℓicl(θ,Z(i))

Xθ =
1

n

n∑
i=1

Y
(i)
θ
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One-step Chaining

We have

sup
θ∈Θ

|Xθ| ≤ sup
θ∈Θε

∣∣∣∣∣ 1n
n∑
i=1

Y
(i)
θ

∣∣∣∣∣+ sup
θ∈Θ

inf
ϕ∈Θε

|Xθ −Xϕ|

where Θε is a minimal finite ε-covering of the parameter space Θ. Suppose
the following conditions hold:
(a) The index set Θ is equipped with a distance ρ and has diameter D.

For some constant A, for any ball Θ′ of radius r in Θ, the covering
number satisfies logN(δ; Θ′, ρ) ≤ d log(2Ar/δ) for all 0 < δ ≤ 2r.

(b) For any fixed θ ∈ Θ and z sampled from Pz, the random variable
Yθ(z) is sub-Gaussian: Yθ(z) ∼ SG(B0).

(c) For any θ,θ′ ∈ Θ and z ∼ Pz, the difference Yθ(z)− Yθ′(z) is
sub-Gaussian: Yθ(z)− Yθ′(z) ∼ SG(B1ρ(θ,θ′)).
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Bounding Term 1

Fix D0 ∈ (0, D] to be specified later. Take a (D0/2)-covering Θ0 of Θ so
that log |Θ0| ≤ d log(2AD/D0). By standard results on covering numbers
of independent sub-Gaussian random variables, with probability at least
1− δ/2,

sup
θ∈Θ0

|Xθ| ≤ CB0

√
log(2AD/D0) + log(2/δ)

n

where C is a universal constant.
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Bounding Term 2

Assume Θ0 = {θ1, · · · ,θn}. For each j ∈ [n], let Θj be the ball centered
at θj with radius D0 in (Θ, ρ). For θ ∈ Θj , Θj has diameter D0 and

logN (Θj , δ) ≤ d log(AD0/δ).

Applying Theorem in High-dimensional Statistics Section 5.6 to the process
{Xθ}θ∈Θj

, we get

ψ = ψ2, ∥Xθ −Xθ′∥ψ ≤ B1

√
n
ρ(θ,θ′),

and

P

(
sup

θ,θ′∈Θj

|Xθ −Xθ′ | ≤ C ′B1D0

(√
d log(2A)

n
+ t

))
≤ 2 exp(−nt2)

, ∀t ≥ 0.
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Generalization Bound

Theorem 12
Suppose (a), (b), (c) hold. Then with probability at least 1− δ, we have

sup
θ∈Θ

|Xθ| ≤ CB0

√
d log(2Aκ) + log(1/δ)

n

where C is a universal constant, and κ = 1 +B1D/B0.
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Verification of the Assumptions

(a)

Lemma 13 (HDS, Example 5.8)

Given any norm ∥ · ∥′, let B = {θ ∈ Rd : ∥θ∥′ ≤ 1}. Then

logN(δ,B, ∥ · ∥′) ≤ d log

(
1 +

2

δ

)
(b) Since inputs and parameters are bounded, Yθ is bounded and thus
sub-Gaussian.
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Lipschitzness of Transformers

Proposition 14 (Lipschitzness of transformers)
Fix the number of heads M and hidden dimension D′. Define

ΘTF,L,B =
{
θ =

(
θ
(1:L)
attn , θ

(1:L)
mlp

)
:M (ℓ) =M, D(ℓ) = D′, ∥θ∥ ≤ B

}
Then, for any fixed H, the function TFR is (LBL−1

H BΘ)-Lipschitz w.r.t.
θ ∈ ΘTF,L,B.

(c) For all θ,θ′, Yθ(Z)− Yθ′(Z) is B1∥θ − θ′∥op-sub-Gaussian for some
B1.
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Generalization Bound of Pretraining

Theorem 15 (Generalization for pretraining)

With probability at least 1− ξ (over the pretraining instances {Zj}j∈[n]),
the solution θ̂ to (TF-ERM) satisfies

Licl(θ̂) ≤ inf
θ∈ΘL,M,D′,B

Licl(θ) +O

(
B2
y

√
L2(MD2 +DD′)ι+ log(1/ξ)

n

)
,

where ι = log(2 + max{B,R,By}) is a log factor.
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Compose the Bounds

Theorem 16 (Pretraining transformers for in-context linear regression)
Suppose P ∼ π is almost surely well-posed for in-context linear regression
(Assumption A) with the canonical parameters. Then, for N ≥ Õ(d), with
probability at least 1− ξ (over the training instances Z(1:n)), the solution θ̂
of (TF-ERM) with L = O(κ log(κN/σ)) layers, M = 3 heads, D′ = 0
(attention-only), and B = O(

√
κd) achieves small excess ICL risk over w⋆

P:

Licl(θ̂)−EP∼πE(x,y)∼P

[
1

2
(y − ⟨w⋆

P,x⟩)2
]
≤ Õ

(√
κ2d2 + log(1/ξ)

n
+
dσ2

N

)
,

where Õ(·) only hides polylogarithmic factors in κ,N, 1/σ.

When we have sufficient training sample(n ≥ Õ(κ2N/σ2),), the above
bound achieve Baysian optimal excess risk Õ(dσ

2

N )
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Takeaways

LLMs are autoregressive probabilistic models over sequences of
tokens.
Transformers are neural networks with Attention Layers.
In-context learning is the ability to learn tasks and generate
corresponding outputs by entering examples without parameter
updates.
Approximation Error can be bounded by constructing a specific
model to simulate an algorithnm.
Generilization Error can be bounded by chaining methods.
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